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Editor’s Note: The following article was the JBES invited address presented at the Joint
Statistical Meetings, Anaheim, California, August 10-14, 1997.

Real and Spurious Long-Memory
Properties of Stock-Market Data

I. N. LoBATO and N. E. SAVIN

Department of Economics, University of lowa, lowa City, IA 52242 (ignacio-lobato@uiowa.edu)

(gene-savin@uiowa.edu)

We test for the presence of long memory in daily stock returns and their squares using a robust
semiparametric procedure of Lobato and Robinson. Spurious results can be produced by nonsta-
tionarity and aggregation. We address these problems by analyzing subperiods of returns and using
individual stocks. The test results show no evidence of long memory in the returns. By contrast,

there is strong evidence in the squared returns.

KEY WORDS: Lagrange multiplier test; Long-range dependence; Semiparametric procedure.

There have been several works analyzing the long-term
properties of stock returns. Greene and Fielitz (1977) used
the R/S statistic (Hurst 1951) to test for long-term depen-
dence in the daily returns of 200 individual stocks on the
New York Stock Exchange from December 23, 1963, to
November 29, 1968, and claimed to have found significant
evidence. Lo (1991) criticized these results on the grounds
that this evidence was due to short-term correlation. He pro-
posed a modified version of the R/S statistic to test robustly
for long-term dependence and found no evidence in favor
of long-run dependence of the monthly and daily returns
on Center for Research in Security Prices (CRSP) stock in-
dexes. Ding, Granger, and Engle (1993) examined the long-
memory properties of several transformations of the abso-
lute value of daily returns on the Standard and Poor’s (S&P)
500, including squared returns, and found considerable evi-
dence of long memory in the squared returns but conducted
no formal test.

The purpose of this article is twofold. The first is to con-
duct a formal test using a semiparametric procedure due
to Lobato and Robinson (1997). They applied the test to
exchange-rate data, including squares of changes in ex-
change rates. The null hypothesis is that of weak depen-
dence or short memory, the alternative being strong depen-
dence or long memory. The procedure focuses on the long-
memory properties of the data irrespective of the short-term
dependence. Although the R/S procedures are robust, their
efficiency properties are questionable; see Robinson (1994).
Furthermore, the test statistic used by Lo has a complicated
asymptotic distribution when the null is true, whereas the
test statistic we consider has the convenient feature that
its asymptotic distribution is chi-squared. Our test accepts
weak dependence for daily returns on the S&P 500 but re-
jects for squared returns. The rejection is even stronger for
absolute returns.

The second purpose is to investigate whether rejection of
weak dependence is due to long memory or is due to other
causes. Two common causes of spurious long memory are
nonstationarity and aggregation. Nonstationarity is a plausi-
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ble explanation for our findings, especially those of Ding et
al., who used S&P 500 data from 1928 to 1992. During this
period, there were changes in the mean of squared returns.
It was very high in the early thirties and then was much
reduced by the end of the decade. During the mid-seventies
and the eighties, there was a substantial increase in the mean
of the squared returns, perhaps due to factors such as the in-
troduction of new financial products and the widespread use
of computer trading programs; see, for example, Grossman
and Zhou (1996). The mean of squared returns appears to
have decreased again in the nineties. Changes in the mean
of squared returns also occur for individual stocks.

In the case of stock indexes, the evidence in favor of long
memory may be due to the effect of aggregation. The key
idea is that aggregation of independent weakly dependent
series can produce a strong dependent series. For example,
in the case of the squares of the daily returns of the S&P
500 it could happen that squares for the individual stocks
do not exhibit long memory and the apparent long memory
of the index is just due to aggregation. A motivation for this
can be found, for instance, in the work of Robinson (1978)
or Granger (1980).

We address the nonstationarity problem by splitting up
the daily data into arguably stationary periods and the ag-
gregation problem by using daily data on the individual
stocks in the Dow Jones Industrial Average. Our conclu-
sions confirm the results of Ding et al. (1993). In particular,
for subseries of the S&P 500 index that appear stationary,
our test favors long memory. Similar results are obtained
for the subseries for the individual stocks in the Dow Jones
Industrial Average.

The organization of the article is the following. In Sec-
tion 1 we briefly review the concept of long memory and
describe the procedure we use to test for long memory. Sec-
tion 2 contains our analysis of the long-memory properties
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of the data. In Section 3 we discuss our results and comment
on intradaily stock returns.

1. TEST STATISTIC

In this section we describe the test statistic that we em-
ploy to analyze the long-memory properties of the data.

There is no unique definition of a long-memory process.
Consider a covariance stationary process z;, assume that
its spectral density function exists, and call it f(A). The
condition

fA) ~CA72H a5 ) —07F (1.1)

for H < 1, H # 1/2, with C a positive constant, character-
izes x; as a long-memory process. Notice that (1.1) includes
two different cases. For H € (1/2,1), f(A) tends to infin-
ity as it is evaluated at frequencies that tend to O (this is
called the strictly long-memory case), but when H < 1/2,
it tends to O (this is called the antipersistent case). The case
H = 1/2 represents the weakly dependent case; f(\) tends
to a constant as it is evaluated at frequencies that tend to 0.

In the time domain, long memory can be characterized
as follows. Let ~; denote the autocovariance at lag j of
zt,v; = El(x1 — p)(z14; — p)], with p denoting the mean
of the process z;:. The condition

v ~ Kj2H=2 as j — oo, (1.2)

where K is a constant and H takes the same values as
previously, characterizes x; as a long-memory process.

Conditions (1.1) and (1.2) are not necessarily equivalent,
but for fractional autoregressive integrated moving average
processes, both hold. Notice that when H € (1/2,1) both
conditions (1.1) and (1.2) imply

oo
Z |75 = 0.

j=—o00

(1.3)

This condition is a more general definition of strictly long
memory.
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H is the parameter that determines the degree of long
memory (the higher the H the longer the memory), so test-
ing the null hypothesis of weak dependence against the al-
ternative of long memory is equivalent to testing H = 1/2
against H # 1/2.

Notice that (1.1) only characterizes the behavior of f(\)
in the neighborhood of 0 and nothing is specified about the
medium- or short-term behavior of the process. Therefore,
robust estimation and testing procedures in the frequency
domain can be carried out using the periodogram (or some
functions of the periodogram) evaluated in a degenerating
neighborhood of zero frequency. To do so it is necessary
to introduce a bandwidth number m that tends to infinity
as the sample size (n) tends to infinity, but slowly so that
m/n tends to 0.

Robinson (1995) analyzed a robust estimation procedure
based on choosing C and H so as to minimize the following
objective function (see Kiinsch 1987; Lobato and Robinson
1997):

2H-1

Q(C,H) = %Z <logC)\;_2H + i’c— I(/\j)) , (1.4)
j=1

where I()\;) is the periodogram at frequency \; (= 27j/n),

n
§ : xtez/\Jt
t=1

Robinson analyzed the properties of the estimate that mini-
mize (1.4) in a compact set [A;, Ag] with0 < A; < Ap < 1.
Denoting this estimate by H, he proved that

2
I(N;

1
)= %

- 1
Vi — H) —a N (O,Z). (1.5)
This estimate appears to be the most efficient semiparamet-
ric estimate developed so far.

We employ an approximation to the Lagrange multiplier
(LM) test to test H = 1/2 against H # 1/2 (or H > 1/2)

Table 1. LM Test for S&P 500
m
Series 30 40 50 60 70 80 90 100
A. July 1962 to December 1994
Returns .76 A1 .02 .15 .07 14 12 .24
Squared returns 2.50 3.68 5.06* 6.14* 7.60* 10.3* 13.5* 17.0*
Absolute value 21.8* 34.6* 45.6* 57.3* 74.4* 96.5* 120* 150*
of returns
B. July 1962 to December 1972
Returns .00 .21 .00 .00 — — — —
Squared returns 4.61* 9.00*  14.9* 23.8* — — — —
Absolute value 12.9* 22.3* 34.4* 51.0* — — — —
of returns
C. January 1973 to December 1994
Returns .08 A7 .09 .00 12 .06 — —_
Squared returns 1.00 1.49 2.71 4.52* 7.01* 8.67* — —_
Absolute value 8.52* 12.3* 21.6* 35.5* 53.4* 72.4* — —

of returns

NOTE: * indicates significant at the 5% level.
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Figure 1. S&P 500 Daily Returns: (a) July 1962-December 1972;
(b) January 1973—-December 1986; (c) January 1987—-December 1994.

based on the objective function (1.4). This test is a partic-
ular case of the more general test analyzed by Lobato and
Robinson (1997). For the univariate case and a two-sided
alternative hypothesis, the LM test statistic has the form

> ey vi(N)?

where

1 m
vj=logj—5j§=_;logj.

The details of the objective function and the testing pro-
cedure were given by Lobato and Robinson (1997). They
provided conditions that establish under the null hypoth-
esis (H = 1/2) that LM —, x? and also conditions for
the consistency of the test. Monte Carlo analysis of this
test was also provided. An alternative procedure that some-
times produces slightly better finite-sample performance is
to use the periodogram of tapered rather than observed data
in Expression (1.6).

The Wald test can also be based on (1.4). The disadvan-
tage of the Wald test is that it needs an estimate for H, so
the minimization of (1.4) has to be carried out by iterative
procedures. Monte Carlo analysis of this test was reported
by Robinson (1995).

2. EMPIRICAL RESULTS

In Table 1 we report results for the LM test of long mem-
ory for daily returns, squared returns, and the absolute value
of the returns for the S&P 500 index between July 1962 and
December 1994. The sample size is n = 8,178. We report
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the test for a grid of values of m from m = 30 to m = 100.
When m equals 30 and 100, the shortest periods that are
taken into account by the test correspond to approximately
273 and 82 days, respectively. No evidence of long mem-
ory is found in the returns, but there is strong evidence of
long memory in the squares. This evidence is even stronger
for the absolute value of the returns, and hence we concen-
trate on the squares. These results are in agreement with Lo
(1991) and Ding et al. (1993).

There are several ways in which the LM test for long
memory can produce spurious results. First, the squared re-
turns process could possess a shift in the mean. To show
how this can happen, consider the following setup. Let
Yy, t=1,2,..., N, be a zero mean stochastic process with

0’% t=1,...Np
Ey? =
0’% t=Ny+1,...,N,

where y; is independent of y; for ¢ # s and, for some v >
0, By?™ < oo for all t. Denote the sample autocovariances
for y or 32 by

2

) 1
'7a‘j=ﬁ
t=1

N
_ _ _ 1
(at — a)(asy; — a), a = N;at

forj=1,...,N—1and a=y or 32

Obviously y; and y? are not covariance stationary pro-
cesses. Hence, the definitions of long memory stated in
Section 1 do not apply. Nevertheless, imagine that the re-
searcher does not know this and tests for evidence of long
memory in y; and y2. What would he/she find? First con-

Table 2. List of Companies With Starting and Ending Dates

Tick Name Starting date Ending date
ATT  AT&T Corp. 07-02-1962 12-30-1994
ALD  Allied Signal Inc. 07-02-1962 12-30-1994
AA Aluminum Company Amer. 07-02-1962 12-30-1994
AXP  American Express Co. 05-18-1977 12-30-1994
BS Bethlehem Steel Corp. 07-02-1962 12-30-1994
BA Boeing Co. 07-02-1962 12-30-1994
CAT  Caterpillar Inc. 07-02-1962 12-30-1994
CHV  Chevron Corp. 07-02-1962 12-30-1994
KO Coca Cola Co. 07-02-1962 12-30-1994
DIS  Walt Disney Co. 07-02-1962 12-30-1994
DD Du Pont E. I. De Nemours & Co. 07-02-1962 12-30-1994
EK Eastman Kodak Co. 07-02-1962 12-30-1994
XON Exxon Corp. 07-02-1962 12-30-1994
GE General Electric Co. 07-02-1962 12-30-1994
GM  General Motors Corp. 07-02-1962 12-30-1994
GT Goodyear Tire & Rubber Co. 07-02-1962 12-30-1994
IBM  I1BM 07-02-1962 12-30-1994
P International Paper Co. 07-02-1962 12-30-1994
MCD McDonalds Corp. 07-05-1966 12-30-1994
MRK  Merck & Co. Inc. 07-02-1962 12-30-1994
MMM Minnesota Mining & Mfg. Co. 07-02-1962 12-30-1994
JPM  J. P. Morgan & Co. Inc. 04-01-1969 12-30-1994
MO Philip Morris Cos. Inc. 07-02-1962 12-30-1994
PG Procter & Gamble Co. 07-02-1962 12-30-1994
S Sears Roebuck & Co. 07-02-1962 12-30-1994
X Texaco Inc. 07-02-1962 12-30-1994
UK Union Carbide Corp. 07-02-1962 12-30-1994
UTX  United Technology Corp. 07-02-1962 12-30-1994
WX  Westinghouse Electric Corp. 07-02-1962 12-30-1994
V4 Woolworth Corp. 07-02-1962 12-30-1994
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Table 3. LM Test for Stock Returns for July 1962—-December 1972

m m
30 40 50 60 30 40 50 60
Stock Returns Squared returns
ATT 18 .00 .00 .00 4.05* 3.1 2.55 1.38
ALD .05 .62 47 .21 30.6* 40.7* 46.9* 58.0*
AA 12 57 1.01 31 23.4* 32.0* 38.3* 50.5*
AXP — — — — — — — —
BS .54 1.32 1.24 .70 9.29* 11.2* 12.4* 10.3*
BA 2.54 4.64 5.31* 1.26 34.0* 55.5* 61.0* 64.7*
CAT .00 .00 a7 15 4.94* 7.99* 12.3* 13.4*
CHV 2.09 2.14 1.09 .01 9.60* 17.7* 17.6* 19.3*
KO .08 .07 10 .00 12.6* 13.6* 26.8* 31.5*
DIS .54 .00 .01 .02 16.8* 23.6* 40.3* 45.5*
DD 2.85 6.19* 1.94 1.19 11.9* 19.5* 30.1* 36.8*
EK .35 43 12 .05 18.7* 23.7* 36.0* 41.4*
XON 5.13* 3.61 1.11 .57 6.90* 12.4* 12.1* 16.2*
GE 49 .09 .02 13 4.90* 7.90* 12.8* 14.7*
GM .00 16 .07 .04 .67 1.37 .98 2.31
GT 4.06 3.07 2.80 1.77 25.7* 41.9* 42.9* 40.9*
IBM .00 1.02 .92 1.11 6.32* 11.6* 17.9* 30.5*
IP 3.81 3.75 3.31 2.49 6.92* 4.41* 4.80* 5.78*
MCD 19 .78 .56 .38 9.36* 13.2* 18.9* 25.3*
MRK .01 .02 .04 44 2.52 3.85* 2.31 2.38
MMM .32 .05 14 .03 3.98* 7.66* 11.7* 21.4*
JPM 13 .00 .03 .64 5.23* 2.02 1.05 1.33
MO .76 .25 .21 .00 20.5* 31.4* 39.6* 31.5*
PG .07 .09 14 .02 8.10* 11.7* 18.1* 22.9*
S .38 .67 1.02 .76 .69 .60 10 .81
TX .65 214 .95 .01 46.0* 58.4* 71.1* 85.1*
UK a7 49 1.58 1.1 18.0* 23.6* 27.0* 25.4*
uTx 52 .02 .74 .23 49.3* 43.9* 48.6* 66.5*
WX .88 12 .02 .03 .78 .00 16 46
4 .00 1.05 .23 45 5.57* 6.77* 9.82* 12.4*

NOTE: * indicates significant at 5% level. Notice that MCD starts 660705 and JPM 690401.

sider the behavior of the sample autocovariances for y;. It
is immediate to show that

w)
vN

for all j, exactly the same as we get with a white-noise pro-
cess, so long memory should not be detected. What about
the behavior of y?? In the appendix it is shown that, for
some constants c; different from 0, 4,2 ; —, c; for all j.
So it is not that the sample autocovariances tend slowly to
0. In fact, they do not even tend to 0.

Nonstationarity may be responsible for the findings of
Ding et al. (1993). They analyzed the S&P 500 series from
1928 to 1992. During this period there are several reasons
to suspect nonstationarity. The squared returns appear to
be much larger in the thirties than in later periods. The
functioning of the stock market may have been affected by
World War II. Recently, during the mid-seventies and es-
pecially the eighties, financial markets have seen the intro-
duction of new financial products and a widespread use of
information technology in the trading process. These con-
siderations may be relevant to understand the Ding et al.
(1993) results. Our sample goes from July 1962 to Decem-
ber 1994, so it also covers a period in which the introduction
of financial innovations raises questions about the station-
arity assumption.

Yy, = Op (

To investigate the possibility that the observed evidence
of long memory is, in fact, due to nonstationarity, we split
our sample into two periods. We take January 1973 as the
break point because the oil-price shock occurred in that
year. In Table 1 we present the results of the LM test for
long memory for the two subsamples using several values
for m. In Figure 1 we plot S&P 500 returns for periods
July 1962-December 1972, January 1973-December 1986,
and January 1987-December 1994. From this plot there is
a very clear increase in volatility between the first two peri-
ods. The crash in October 1987 dominates the bottom part
of Figure 1. Our eyeball test says that the series is stationary
during the period 1962-1972 and it may be for 1973-1994.
Thus, it is of interest that the squared returns exhibit strong
evidence of long memory for the period 1962-1972 as well
as for 1973-1994. Hidalgo and Robinson (1996) gave a test
for structural change in the mean in the presence of long
memory when the time series is Gaussian. To our knowl-
edge, no formal test is available for non-Gaussian processes.
[The fact that stock returns are non-Gaussian has been es-
tablished in several works; see, for instance, Brock and de
Lima (1996).]

The second reason why the evidence of long memory in
the squared returns in the S&P 500 can be spurious is based
on aggregation. The S&P 500 is an aggregate index of the
stock market, so its squared returns are derived from the
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squared returns of the individual stocks. It may well happen
that the specific stocks do not exhibit strong dependence
and the apparent long memory of the index is just due to ag-
gregation. A motivation of this can be found, for instance, in
the work of Robinson (1978) or Granger (1980). These arti-
cles showed that, starting with individual independent first-
order autoregressive [AR(1)] series with random autoregres-
sive coefficients, the aggregate series can exhibit long mem-
ory for certain specifications of the distribution function
from which these coefficients are drawn. This result can
be generalized to other weak dependent processes, in par-
ticular autoregressive moving average processes. The key
idea is that aggregation of independent weakly dependent
series can produce a strongly dependent series. In our case,
it seems very implausible to assume independence of the
squared returns processes for the individual stocks. So the
aggregation explanation of Robinson (1978) and Granger
(1980) is not directly applicable. Nonetheless, what is clear
is that aggregation may produce spurious evidence of long
memory.

To examine this possibility, we analyzed the long-
memory properties of the 30 stocks that compose the Dow
Jones Industrial Average. These 30 stocks are listed in Ta-
ble 2 with their ticks and periods covered. Except for three
cases, the data are for July 1962 to December 1994. These
data are taken from the CRSP files. In Tables 3 and 4 we re-
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port the LM statistics for the returns and the squared returns
for the periods July 1962 to December 1972 and January
1973 to December 1994.

There are several features that should be noticed. First,
there is no evidence of long memory in the returns for any
period. Second, with respect to the squares the evidence is
more varied. For the period July 1962 to December 1972 all
stocks but six (ATT, GM, MRK, JPM, S, WX) show strong
evidence. For the period January 1973 to December 1994
there is stronger evidence of long memory in the squared re-
turns. It is worth mentioning that the period 1973-1994 has
gone through substantial changes in both financial instru-
ments and information-technology tools. Thus, it is plausi-
ble that the squared returns are nonstationary in this period.
This could explain the widespread finding of long memory
in the squared returns in this period.

The results for the LM test for the whole period are in
Table 5. It is not surprising that for all the series there is
evidence of long memory in the squared returns. For some
stocks, in particular the six just noted, this evidence of long
memory may be spurious and may be due to nonstationarity
during the whole period.

Nonstationarity and aggregation are two important causes
of spurious evidence of long memory, but they are not the
only ones. In the rest of the section we mention three ad-
ditional causes.

Table 4. LM Test for Stock Returns for January 1973—-December 1994

m m
30 50 60 80 30 50 60 80
Stock Returns Squared returns
ATT .02 47 .36 .28 13.4* 22.3* 29.4* 34.7*
ALD .00 1.16 .79 27 .09 .88 1.38 2.02
AA 217 2.10 1.18 2.21 4.38* 13.2* 16.3* 29.1*
AXP — — — — — — — —
BS 1.10 .29 10 1.52 26.9* 36.8* 41.3* 60.9*
BA 14 22 A7 .00 15.1* 34.7* 52.0* 77.6*
CAT .21 .03 .06 .28 4.22* 7.86* 9.50* 16.2*
cuv .35 46 1.11 1.92 14.1* 30.7* 39.1* 76.9*
KO .08 .95 2.58 .44 2.56 6.68* 10.3* 15.0*
DIS .78 .03 .08 14 6.40* 16.1* 20.7* 29.9*
DD .53 .01 .02 .21 3.71 8.51* 12.8* 25.5*
EK .31 .25 1.27 1.07 .33 240 3.50 5.27*
XON 1.90 47 .34 .29 1.34 3.96* 6.32* 11.9*
GE .30 .06 .01 .32 7.23* 20.5* 28.2* 49.2*
GM 1.02 .06 .01 .06 5.54* 12.8* 16.2* 22.7*
GT 1.18 3.84* 3.34 2.01 2.50 4.56* 7.11* 12.4*
IBM .01 71 71 10 2.82 7.80* 12.6* 17.7*
IP .02 18 74 3.61 3.07 7.83* 11.4* 21.7*
MCD 1.82 .40 A48 .58 17.9* 46.6* 71.5* 105.4*
MRK 1.98 10 1.54 .28 2.13 9.28* 16.5* 33.2*
MMM .02 19 04 .90 244 8.89* 13.6* 25.8*
JPM 00 .42 .34 .02 1.50 4.16* 5.39* 7.55*
MO .05 .75 .07 .02 2.70 6.48* 10.7* 19.8*
PG 37 14 .04 .80 1.84 1.87 2.24 4.62*
S .08 18 .25 1.66 .40 2.25 5.28* 13.5*
TX .07 2.86 2.93 2.30 9.53* 13.4* 20.4* 36.8*
UK 1.56 1.71 .90 42 11.2* 13.8* 21.8* 28.4*
UTx .01 1.04 .78 .31 6.54* 13.6* 19.4* 31.2*
WX .53 1.08 1.57 1.03 1.73 4.05* 3.84* 7.02*
z .03 .58 .75 18 .24 1.05 1.62 8.61*

NOTE: * indicates significant at 5% level.
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Table 5. LM Test for Stock Returns for July 1962—December 1994

m m
30 50 80 100 30 50 80 100

Stock Returns Squared returns

ATT .05 .05 A .70 18.6* 30.7* 53.5* 67.0*
ALD A7 .01 1.0 15 .45 1.98 4.09* 6.60*
AA 2.98 2.16 1.3 2.83 6.66* 18.1* 36.0* 53.1*
AXP .58 2.24 .0 31 1.59 5.12* 8.64* 9.61*
BS 1.74 1.15 .5 .28 37.8* 62.1* 97.2* 130.2*
BA .33 1.81 1.2 1.28 31.1* 67.0* 114.7* 167.2*
CAT .14 A2 .0 .18 1.55 7.51* 13.2* 18.6*
CHV .58 .08 A .65 29.4* 50.7* 101.4* 148.6
KO .81 .25 1.3 .06 3.22 9.56* 19.9* 28.9*
DIS .04 .93 4 .04 6.09* 12.3* 31.0* 43.0*
DD .23 .00 4 .58 14.5* 30.8* 51.2* 74.5*
EK .00 .40 15 1.32 1.50 4.25* 9.68* 14.7*
XON .19 3.61 2.2 2.20 2.10 5.10* 11.8* 18.8*
GE .43 .03 6 46 6.70* 18.8* 42.2* 61.5*
GM .43 1.24 A 51 13.8* 26.0* 46.3* 58.7*
GT .32 1.36 2.0 1.14 4.32* 9.80* 15.4* 20.1*
IBM 14 .10 11 .24 2.01 6.76* 18.0* 25.0*
IP .21 .00 1.3 4.14* 1.89 7.68* 16.4* 27.0*
MCD 19 .05 A .65 18.3* 47.1* 120.9* 167.1*
MRK 1.10 1.45 4 .02 .78 4.42* 17.2* 35.4*
MMM .30 22 1.1 .96 .55 4.52* 14.1* 25.2*
JPM .22 .23 5 .00 1.85 3.63 7.79* 10.4*
MO .09 .37 1.0 .26 2.36 7.10* 17.2* 25.8*
PG .65 .18 .0 1.08 2.65 4.67* 4.51* 7.46*
S .15 .05 .0 .23 4.88* 12.1* 21.6* 34.8*
TX .00 1.14 2.2 2.34 16.1* 31.8* 45.5* 71.0*
UK 1.89 3.33 21 1.77 21.5* 32.2* 47.7* 73.0*
uTXx .06 .03 3 .45 16.6* 40.7* 66.9* 88.2*
WX .04 .35 2 .90 4.85* 7.52* 11.1* 15.9*
z .21 .06 .0 .02 .36 5.04* 7.88* 13.6*
NOTE: * indicates significant at 5% level. Notice that AXP starts 770518, MCD starts 660705, and JPM 690401.

The third cause is a seasonal long-memory component
in the returns. This case was analyzed by Lobato (1997).
For an exchange-rate series (British pound against Deutsche
mark for 1989 to 1994), it is shown how the presence of
a strong cyclic component of about two weeks in their re-
turns can produce spurious evidence of long memory in the
squared returns. For the S&P 500, however, this explanation
does not seem applicable.

The fourth cause involves size distortions. Lobato and
Robinson (1997) showed that the LM test suffers from se-
vere size distortions in the AR(1) case when the autore-
gressive coefficient takes values near 1; the closer to 1, the
greater the distortion. In Table 6 we report a Monte Carlo
study to demonstrate this possibility. We generate 5,000
replications of a first-order autoregressive conditional het-
eroscedasticity [ARCH(1)] process

(2.1

_ 2 _ 2
Yt = €01, 0; = 0o + oYy

with sample size = 1,000, oy = .1, five values for oy (.0, .3,
.6, .9, .95), and where ¢; is independently and identically
distributed N(O, 1). We consider three values for m, 40, 70,
and 100, and report the percentage of rejections based on
the 5% and 1% critical values of x?. There is some spurious
evidence of long memory for o; = .9 and .95 when m =
100. When m is smaller, this phenomenon is not so marked.

Notice that, if |a;| > 1/+/3, the fourth moment is not finite.
In this case our test procedure does not work.

The fifth cause is the nonexistence of higher-order mo-
ments. This is motivated by the preceding comment on the
existence of the fourth moment. The LM test, as well as the
Wald test, for long memory assumes that the examined se-
ries has a finite fourth moment. Loretan and Phillips (1993)
argued that the fourth moment may not exist for financial
series. We do not know, however, of a robust test for the
nonexistence of moments in a long-memory environment.
A robust procedure analyzed by Hsing (1991) is valid for
weak dependent processes but not for long-memory pro-
cesses. At any rate, there is no consensus in this matter.
For different series, different results have been found; see
Brock and de Lima (1996).

3. DISCUSSION

In this article we have examined the presence of long
memory in daily stock returns and their squares using a
semiparametric procedure that is robust to the presence of
weak dependence. Our test results indicate no evidence of
long memory in the levels of the returns. For the squared
returns, however, the test results favor long memory and
hence confirm the conclusion of Ding et al. (1993). Fur-
thermore, our analysis suggests that this evidence in favor
of long memory is real, not spurious.
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Table 6. LM Percentage of Rejections

m
40 70 100
a 5% 1% 5% 1% 5% 1%
A. Returns
0 .025 .006 .034 .007 .036 .009
3 .024 .006 .034 .007 .037 .009
6 .023 .007 .034 .007 .046 .011
9 .023 .006 .059 .019 110 .046
.95 .024 .007 .066 .024 127 .060
B. Squared returns
0 .026 .008 .033 .007 .036 .008
3 .026 .009 .038 .011 .063 .022
.6 .028 .010 .054 .025 169 .084
.9 .028 .011 107 .052 .331 .208
.95 .028 .013 118 .063 .353 .225

NOTE: Series follow ARCH(1) as stated in Equation (2.1). Sample size = 1,000. Number of
replications = 5,000

If there is indeed long memory in the squares of the re-
turns, then the standard statistical tools for inference are
not valid (see, for instance, Beran 1994, chap. 1). In par-
ticular, inferences about squared returns and volatility us-
ing standard techniques can be misleading. For instance,
the standard errors for the estimates of the coefficients of
conventional ARCH or stochastic volatility models will be
incorrect and hence the confidence intervals for predictions.

In the case of long memory in squared stock returns,
dependence in stock returns is not properly measured by
autocorrelations. In the case of the S&P 500, however, the
Box and Ljung modified () test statistic does detect depen-
dence when using a small number of lags; this is due to
the first autocorrelation. In other cases, more refined tests
of independence than those based on the spectrum may be
needed (see, for instance, Robinson 1991; Skaug and Tjos-
theim 1993; Delgado 1996; Pinkse in press, and references
therein).

We also investigated intradaily stock returns for long
memory because these data are now commonly used in
finance (Stoll and Whaley 1990). In particular, we tested
the minute-by-minute returns and their squares for IBM,
one of the most heavily traded stocks. The results showed
no evidence of long memory in the returns but strong evi-
dence for the squared returns. In this article, however, we
do not present our findings. The reason is that nonstation-
arity poses a serious problem in the case of intradaily re-
turns. It is a well-known institutional fact that intradaily
squared returns are nonstationary. For a period of a day,
the time series of intradaily squared returns has an inverse
J shape (Brock and Kleidon 1992; Madhavan, Richardson,
and Roomans 1994). Splitting the intradaily data into what
appear to be stationary periods does not permit us to test for
long memory because the stationary periods are too short
for the distribution of the test statistic we employ to be
well approximated by its asymptotic normal distribution.
One approach to treating the small-sample problem is to
patch days together omitting, say, the first 10 minutes of
each day; see, for example, Stoll and Whaley (1990). It is

267

highly questionable whether this is a satisfactory solution
to the nonstationarity problem.

ACKNOWLEDGMENTS

We thank J. Cotter, D. Foster, N. Kocherlakota, A. Vijh,
P. Weller, H. White, the coeditor, an associate editor, and
two referees for useful comments, M. A. Delgado and H.
Skaug for the use of their computer programs, and Yue Yu
for assistance with the data.

APPENDIX: AUTOCOVARIANCE OF SQUARES

For simplicity, let z; = y? and 2 be its mean. Now, be-
cause z; — o7 is a uniformly integrable zero mean indepen-
dent sequence, we can apply a weak law of large numbers
(WLLN) to that sequence so that

z— Ez =o0,(1). (A1)
Now, using (2; — 2) = (2t — 02) — (£ — 02), we get
1 X
V2.5 N (2 — 07) (2145 — 074 ;)
t=1
— (2 —0})(Z— 07y 5)
= (2t45 — Ut2+j)(5 - 0})
+ (Z—Uf)(z—afﬂ-)]. (A2)
Now, as
1 X
Z—o? = 2‘E5+NZ (03 — o2)
k=1
L&
=N (02 — 0?) + 0,(1), (A.3)
k=1
the last term in (A.2) is
| NN N
LY S5 (ot —otot —atat +ood, ) +o,(L)
t=1 k=1k/—=1
Furthermore,
N

(07 —0f) =KiI(1 <t < Ny) + Kol (Ny +1 < t < N),
k=1

where K, and K, are given by K; = (N — Ny) (02 — 0?)
and Ky = —N,(02 — 0%) and I(A) is the indicator function;
that is, I(A) = 1 if A is true, I(A) = 0 otherwise. Then the
last term of (A.2) is

N—j

1
STIKMA <t <Nyl <t+5<Ny)
t=1

N3
+ K1KoaI(1<t< Npy;Ny+1<t+3j<N)
+ K1 Ko I(Ny +1<t<N;1<t+j<N)
+ KZI(Ny+1<t<N;Ny+1<t+j<N)

+ 0p(1).
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The first summand is KZ(N, — j)I(j < Ny), the third is 0,
the fourth is K2(N — N, —3)I(j < N —Ny), and the second
is

JK1K2 f1<j<N
NyK1 K2 if Ny <j<N-N,
(N—-Jj)KiKy if N-Ny<j

so that the last term in (A.2) has a different value depending
onj. For1l<j<N,,itis

(1 - 6) — % (1 -6+62),

for Ny <j <N —Npitis

J ga?
~ L uy
N k)

and for N— N, <j < N-—1itis

—w6(1 - 6) (1 - %) ,

with ¥ = (02 — 0?) and § = N,/N. Now the first term in
(A.2)is 0,(1), applying a WLLN to the uniformly integrable
zero mean independent sequence (z; — 07)(2z14; — 07 ;)
and the second and third terms are op,(1) using (A.1)
and (A.3).

[Received April 1996. Revised October 1997.]
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Comment

Clive W. J. GRANGER

Department of Economics, University of California at San Diego, La Jolla, CA 92093 (cgranger@ucsd.edu)

This article throws further light on one of the more
interesting puzzles concerning speculative markets—why
do measures of volatility appear to have the long-memory
property? I find it easiest to think about this result in the
representation r; = (sign r¢)|r:|, where r; takes the value
of 1if r, > 0 and —1 if 7y < 0. Suppose that sign r; and |r|
are independent and that sign r; is short-memory, as shown

by Granger and Ding (1995); then r; will be short-memory
even though |r;| and thus r? is long-memory, as found here
and in several other works. An aspect of the article that I
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