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Abstract

Inspired by the idea that regime switching may give rise to persistence that is
observationally equivalent to a unit root, we derive a regime switching process that
exhibits long memory. The feature of the process that generates long memory is a heavy-
tailed duration distribution. Using this process for volatility, we obtain a regime switch-
ing stochastic volatility (RSSV) model that we "t to daily S&P returns from 1928 through
1995 by means of the e$cient method of moments estimation (EMM) method. Forecasts
of RSSV volatility given past returns can be generated by reprojection, as we illustrate.
The RSSV model is accepted according to the EMM chi-squared statistic. Using this
statistic, we also evaluate several other models that have been proposed in the literature
and some modi"cations to them. We "nd that models that exhibit long memory in
volatility and heavy tails conditionally, as does the RSSV model, "t the data, whereas
models without these characteristics do not. We also "nd weak evidence that suggests the
presence of an additional short memory component of volatility over and above the long
memory component. ( 2000 Elsevier Science S.A. All rights reserved.
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Keywords: Long memory; Regime switching; E$cient method of moments; Stochastic
volatility model

Econom=2142=Durai=Venkatachala=BG

0304-4076/00/$ - see front matter ( 2000 Elsevier Science S.A. All rights reserved.
PII: S 0 3 0 4 - 4 0 7 6 ( 0 0 ) 0 0 0 3 3 - 6



It is now more or less commonly understood that "nancial time series can
exhibit signi"cant persistence in volatility. To model this persistence, we have
most notably a large family of ARCH models, starting from Engle (1982).
Recently, people have begun to realize that the observed persistence can be
better captured by long memory processes as shown by the studies of Ding et al.
(1993), Harvey (1993), Baillie et al. (1996), Bollerslev and Mikkelsen (1996) and
Breidt et al. (1998), among others. All of these studies suggest that the correla-
tion of the volatility of the return series decays slowly in a hyperbolic way,
instead of exponentially as implied by any traditional model in the ARCH
family.

The existence of long memory, especially in an economic time series, has been
understood to arise from the aggregation of a cross section of time series.
Granger (1980) proposed that the aggregation of a cross section of time series
with di!erent persistence levels would introduce long memory. His argument
was used by Haubrich and Lo (1991) in explaining the long memory pattern in
business cycles. Recently, the argument was used by Andersen and Bollerslev
(1997) in studying the relationship between long memory in volatility and the
aggregation of di!erent information #ows. The ingenuity of the Granger argu-
ment lies in the Beta distribution that he imposed on the distribution of the
di!erent persistence levels of the aggregated time series. As the number of
aggregated series goes to in"nity, Granger (1980) showed that the aggregation
series exhibits the long memory pattern.

In this paper, we propose regime switching as another explanation for the
observed long memory. As the regime switches in a heavy-tail manner, that is,
when the duration of the regimes has a heavy-tail distribution, the long memory
pattern appears in the autocorrelation function of the time series. This idea is
applied to the case of stock market volatility. We construct a model, which we
call the regime switching stochastic volatility (RSSV) model, to model the long
memory pattern in stock market volatility. We argue that the arrival of major
news triggers volatility jumps or switches in stock market volatility. In particu-
lar, when di!erent news arrive at the market in a heavy-tail fashion, we observe
long memory in the stock market volatility.

Diebold (1986) and Lamoureux and Lastrapes (1990), among others, pointed
out that exogenous deterministic structural change could give rise to persistence
observationally equivalent to that of the GARCH model. Hamilton and Susmel
(1994) and Cai (1994) attach an endogenous regime switching component to the
original ARCH models to study the potential impact of regime switching on the
stock return dynamics. With both the ARCH component and the regime
switching component in their model, their studies suggest that most of the
observed persistence in the volatility process may actually come from the
persistence of the regime.

Our argument can be considered an extension of the above regime switch-
ing argument. The regime switching model we use, however, di!ers from the
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1Heavy tail usually means a probability distribution with a tail probability larger than the normal
distribution in the literature. However, here by heavy tail we mean a distribution with a polynomial
tail as de"ned in Assumption 1.1.

Hamilton regime switching model. Instead of modeling regime switching as
a transition according to a Markov transition matrix, we model regime switch-
ing as a transition across i.i.d. regimes with the duration of each regime
distributed according to a certain probability law. Under the assumption
that the duration of a regime is distributed as any heavily tailed distribution,1 we
show that we have long memory with a magnitude determined by the tail
index of this distribution. As a result, RSSV model proposed in this paper
generates the long memory behavior in volatility as observed in the stock
market.

Although algebraically quite maneuverable, the inference of the RSSV
model is not simple. A simulation-based indirect inference method, speci"-
cally the EMM estimation, is employed to investigate the empirical re-
levance of the proposed model. The result of our estimation is quite positive.
We "nd that the duration of a regime is considerably heavy-tail distributed
and we cannot reject the hypothesis that the observed stock price dynamics
actually arise from the RSSV model. The estimated heavy-tail index is
also compared with the estimated long memory coe$cient and we cannot reject
the proposition that the observed long memory is a consequence of regime
switching.

The paper is organized as follows. In Section 1, based on a mathematical
argument of Levy (1983), we present the basic assumptions and the mechanism
by which a regime switching model can imply long memory. In Section 2 we
propose the regime switching stochastic volatility model and derive the func-
tional limit of its integrated series as the sample size goes to in"nity. In Section
3 we go over the basics of the EMM estimation and show our empirical results.
Section 4 concludes the paper.

1. Introduction: Long memory and regime switching

In this section, based on a mathematical argument of Levy (1983), we propose
that regime switching gives rise to the observed long memory phenomenon. The
condition under which regime switching can exhibit long memory is stated.
Some comparisons between this model and the existing regime switching model
are also made. While the mathematical argument in the proof of Theorem 1.1 is
taken from Levy (1983), all other results are ours. The model we give in this
section is not intended to be speci"c so that it can be applied in other di!erent
circumstances where long memory is of concern.
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2The i.i.d. assumption enables us to take the process as a renewal process and is essential for the
analytical argument to take e!ect. And we believe a minor deviation from this assumption will not
a!ect the correctness of the result.

1.1. Long memory } a consequence of regime switching

Long memory has been used to model the persistence of stationary economic
data ever since the work of Granger and Joyeux (1980). From the perspective of
the time domain, we de"ne a long memory process as follows:

De,nition 1.1. A weakly stationary process has long memory if its autocorrela-
tion function o( ) ) has a hyperbolic decay

o(t)&¸(t)t2d~1 as tPR, 0(d(1
2
, ¸(t) is slow varying. (1)

In contrast, a short memory time series will have an autocorrelation function
geometrically bounded as follows:

Do(t)D)Cr@t@ for some C'0, 0(r(1. (2)

It is easy to see that most stationary ARMA models such as the ARMA(p,q)
model or the Markov chain regime switching model (as shown in Theorem 1.2)
will only have a short memory.

There has been a vast literature on regime switching models from the mid-
1980s onward due to the intuitive appeal of such models. As in the literature,
here a regime may very well be related to certain latent state variables, which are
relatively stable compared with the economic variables we are concerned with.
The latent state variables may very well be taken simply as environmental
parameters when economic agents try to make their more transient decisions. In
the context of "nancial economics, this regime-speci"c variable may correspond
to some speci"c monetary policy, in the case of interest rates; or correspond to
market uncertainty levels as laid out by various pieces of major market news, in
the case of stock market volatility. These regime-speci"c variables are relatively
stable compared with the transience of everyday life, yet they change over
regimes. Note here that by modeling the world as if there were only regime
switchings, we intentionally abstract ourselves from the dynamics within a re-
gime and focus ourselves on the dynamics across regimes.

In the regime switching model, discrete calendar time is divided according to
di!erent regimes. The regimes are related to some latent state variable= which
takes on some regime-speci"c value=

k
in the kth regime. We will call the time

that the kth regime lasts the kth interarrival time and will denote it as ¹
k
.

We assume that the duration of the regime (interarrival time, waiting time)
¹

k
is i.i.d.2 and that it has the tail probability behavior of Assumption 1.1. As we
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3This can be seen from the possibility of some very long-lasting regimes and the relatively short
mean of the interarrival times. Another way of looking at this is through duration dependence. This
distribution implies negative duration dependence for regimes lasting long enough. See Diebold et
al. (1993) for related literature.

4See Theorems 8.9.12, 8.9.13 and 8.9.14 of Bingham et al. (1987) on #uctuation theory. The basic
idea is that, for most random walks, the ladder epoch will be distributed as a stable distribution with
an index of 1

2
, and if we think of our interarrival time as determined by 2 or 3 independent ladder

epoches superimposed together, then we could get an interarrival distribution as in our assumption.
Of course, more involved triggering mechanics are possible and the empirical study of them in an
economic time series could be challenging. Also see the qualitative threshold ARCH model as
proposed in Gourieroux and Monfort (1992).

5We assume a 0 mean only for analytical convenience and we can eliminate this zero mean
assumption without doing any harm to our argument.

will see from Theorem 1.1, this heavy-tail interarrival time distribution is the
only type of distribution hypothesis that gives rise to the long memory behavior
if long memory is truly related to regime switching.

Assumption 1.1. The interarrival time ¹
k

is i.i.d. with a heavy-tail stationary
distribution in the form of P(¹

k
't)&t~ah(t), as tPR where 1(a(2 and

h(t) is slow varying.

This kind of distribution implies a possible clustering of regime switching;
that is, in the view of an agent or market observer, there may appear a long-
lasting tranquil period followed by a period of frequent regime switchings.3 This
kind of interarrival distribution can be endogenized by the crossing behavior of
a random walk. When a certain key economic time series hits its threshold, it
may trigger a jump in certain environmental parameters and thus cause regime
switching. This kind of threshold rationale suggests that regimes tend to switch
in a heavy-tail way.4 The rise of regime switching suggests that there can be
connections between the interarrival time ¹

k
and the level of the variable=

k
in

that regime. The following assumption is therefore obviously an abstraction and
a convenient starting point for a much more thorough study.

Assumption 1.2. The regime switching variable =
k
3WLR is constant in

a regime and i.i.d. with a 0 mean5 and a "nite second moment p2
W

across regimes.
Also, it is independent of the interarrival time ¹

k
.

As we will see, the above two assumptions provide another way of endogeniz-
ing the regime switching without resorting to the Markov chain. We note that
Assumption 1.2 does not rule out the case when the support of =

k
contains

a "nite number of values.
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6The proof is adapted from a mathematical argument of Levy (1983).

Given a sequence of i.i.d. interarrival times M¹
k
N with mean k, we can de"ne

a renewal process MS
k
N as follows:

S
k
"G

S
0
#¹

1
#2#¹

k
, k"1, 2,2,

S
0
, k"0,

(3)

where we take S
0

to denote the time between the start of our sample and the
epoch when we observe the "rst regime switching. It is independent of the ¹

k
's

and distributed as

P(S
0
"u)"k~1P(¹

k
*u#1) for u"0, 1,2 . (4)

With the 0th renewal epoch having a steady-state distribution, we achieve the
stationarity of MS

k
N. It is easy to see that S

0
is distributed as stable with an index

a!1; namely P(S
0
't)&a~1k~1t1~ah(t) by the Karamata Theorem. Imposing

S
0

as the starting point of our renewal sequence makes sense because, for any
sample, the epoch 0 is not necessarily the exact point of regime switching; that is,
we are not necessarily starting afresh with a new regime when the sample starts.
Our sample is more likely to start from a regime which has already been in place
for a long while, and the time between epoch 0 and the "rst observed break point
may simply correspond to the concept of forward waiting time, which has the
distribution of S

0
.

We take the regime switching variable w
t
, where w

t
"=

k
if time t lies in the

kth regime, as a #ow variable. In certain contexts, we may also be interested
in studying the behavior of the "rst-order integration of w

t
, i.e. the stock

variable w6
t
,

w6
t
"

t
+
s/1

w
s
. (5)

Note that w6
t
is no longer regime switching.

With this notation in hand, we can state the main theorem.6

Theorem 1.1. Under the heavy-tail regime switching mechanism with an index a,
the regime switching variable will exhibit long memory property with d"1!a/2
in its autocorrelation function, i.e. the covariance between w

t
and w

s
will be of the

form p2
W

k~1(t!s)1~ah(t!s), as t!sPR and given t's.

Proof. By the assumption of the independence of =
i

and =
j
, w

t
will be

correlated with w
s

only when they are in the same regime, i.e. when no regime
switching happens during the period [s, t]. Thus, if we use C(t!s) to denote the
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7The stationarity of process w
t
is obvious.

covariance between the two epochs s and t,7 we have

C(t!s)"Ew
t
w

s

"+
t

E[w2
k
I(S

k~1
(t)S

k
)I(S

k~1
(s)S

k
)]

"p2
W

+
k

P(S
k~1

(s(t)S
k
)

"p2
W

P(S
0
*t!s).

This last equation comes from an argument from pp. 369}370 of Feller (1971),
and the theorem is established given the probability structure of S

0
. h

Now we consider how long memory preserves itself when we apply a func-
tional transformation to the original series w

t
, z

t
"f (w

t
). It is easy to see that

z
t
is still i.i.d. across regimes. If z

t
still has a "nite variance, from the proof of the

lemma it is apparent that the long memory property is invariant to this
transformation and is uniquely determined by the underlying renewal structure.
We state this observation as Lemma 1.1.

Lemma 1.1. Given a time series w
t

with a heavy-tail regime switching mechanism
with index a, any functional transformation of the original process preserving the
property of xnite variance also preserves the property of long memory, i.e. it has
a long memory of the magnitude d"1!a/2.

As we can see from the above proof, we can have a corresponding correlation
structure for any given distribution of regime duration. The converse question
can be asked: Do we have a unique distribution of regime duration given that we
know a particular autocorrelation structure? This question has been partially
addressed by Parke (1995) in the case of the ARFIMA process. More generally,
it is easy to see from the proof of the above lemma,

C(t!s)"p2
W

P(S
0
*t!s). (6)

Hence,

P(S
0
"t)"

1

p2
W

[C(t)!C(t#1)], (7)
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8To state loosely, if the a.c.f. is decreasing and convex.

9The corresponding duration probability structure of the simple integrated series (1!¸)dw
t
"e

t
has been derived by Parke (1995) as

P(¹
k
't)"

C(t#d)C(2!d)

C(t#2!d)C(d)
. (9)

As can be easily seen from Sterling's formula, it converges to t~(2~2d) as tPR and thus the
duration probability structure is heavy tail with a"2!2d. Also, we want to note that for the simple
integrated series, the mean of the duration is tied to the tail index in the corresponding renewal
structure.

implying

P(¹
k
"t)"

k
p2
W

[C(t!1)!C(t)]![C(t)!C(t#1)]. (8)

So if both the autocorrelation and its "rst di!erence are decreasing in time,8 we
can have a correspondingly unique distribution for the duration of a regime.9

Under Assumption 1.2, a is in the interval (1, 2), and correspondingly the long
memory coe$cient is in the region (0, 1

2
). A similar argument to the above can

show that, when a is in the region (2, 3), we have a series with d in (!1
2
, 0).

The model in this section generates a covariance structure with long memory
characteristics, and for some very general forms of long memory covariance
structure, we can "nd a corresponding regime switching structure. This, how-
ever, should not be taken to mean that all long memory models have an
equivalent counterpart in the regime switching form or vice versa. While two
models may share the same covariance structure, they may di!er signi"cantly.
As there are many jumps in the regime switching model, this model is more
volatile than its ARFIMA counterpart. As shown in Levy (1983), the functional
limit of w6

t
is the Levy motion, which can be thought of as an aggregation of

a di!usion part and a jump part. This limit is di!erent from the temporal
aggregation limit of the Gaussian ARFIMA model, which has been shown by
Sowell (1990) as fractional Brownian motion. For more along these lines, see
Levy (1983) or Taqqu and Levy (1986).

1.2. Comparison with the Markov regime switching model

In this subsection, we will compare our model with the popular Markov
regime switching model. We will "rst state some theoretical results that demon-
strate the inability of the Markov regime switching model to generate long
memory behavior.

We start with a simpli"ed version of the Markov chain regime switching
model proposed in Hamilton (1989). There are "nite states in this setup,
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M=
1
, =

2
,2,=

n
N. The regime switching variable w

t
takes on the above values

according to a Markov transition matrix P"(p
i,j

). We assume that the chain
is irreducible and recurrent, and that there exists a stationary probability for
the chain as P

0
"(p

1
, p

2
,2, p

n
)@. The next theorem will show that, under the

above conditions, the Hamilton Markov chain regime switching model is in
the class of short memory models.

Theorem 1.2. If the Markov chain is stationary, then the Markov chain regime
switching model is in the class of short memory models.

Proof. Given that there exists a stationary distribution, namely p
i
*0, then by

13.III of Romanovskii (1970), we know that the transition matrix P is regular. If
we denote the eigenvalues of P as M1, j

1
, j

2
,2, j

k
N, then we know j

i
(1 ∀i,

and the eigenvalue 1 is simple.
Now let us consider the covariance between w

t
and w

t`s
, assuming that,

without loss of generality, Ew
t
"0. We have

cov(w
t
, w

t`s
)"

n
+
i/1

=
i

n
+
j/1

ps
i,j
=

j
, (10)

where ps
i,j

denotes the ijth element of the s step transition matrix, P(s)"Ps. Yet
by Perron's formula (see Romanovskii, 1970), we know that ps

i,j
"

p
j
#+k

l/1
Q

ijl
(s)js

l
, where Q

ijl
(s) is some polynomial of "nite degree in s so that

cov(w
t
, w

t`s
)"

n
+
i/1

n
+
j/1

=
i
=

j

k
+
l/1

Q
ijl

(s)js
l
. (11)

Since all j
l
(1, it follows that we can "nd C and r such that cov(w

t
, w

t`s
)(Crs.

This places it in the class of short memory models. h

Now suppose w@
t
"w

t
#u

t
as in the Hamilton (1989) model. We assume, as in

his model, independence between the regime switching part w
t
and the random

error part u
t
. Then cov(w@

t
, w@

t`s
)"cov(w

t
, w

t`s
)#cov(u

t
, u

t`s
). It is easy to see

that, as long as the error part u
t
is in the short memory class, w@

t
will also be in

the short memory class.
Another important class of model we shall consider is regime switching in

slope model. Here we will restrict ourselves to the following simple model:

x
t
"w

t
x
t~1

#e
t
, with e

t
, i.i.d. (0, 1) variable (12)

and w
t
switches among a "nite number of values=

k
all less than 1 in absolute

value. Given the value of Mw
t
N, we have cov(x

t
, x

t`s
)"<t`s

i/t`1
w
i
varx

t
. Since

we can "nd some= greater than=
k

∀k, and less than 1 in absolute value, it is
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obvious that this regime switching in slope model is also in the class of short
memory models.

Despite the fact that the Markov chain regime switching model cannot give
rise to the long memory phenomenon asymptotically, considerable persistence
can be generated by assuming persistence in some regimes. When the sample size
is small, both the switching behavior and the implied autocorrelation may be
similar for the Markov regime switching model and the model proposed in the
previous subsection.

2. Long memory and regime switching in volatility

Andersen and Bollerslev (1997) conjecture that long memory in volatility
comes from an aggregation of an underlying &news' arrival process with di!erent
persistence levels in the manner of Granger (1980), but they do not attempt to
refute the key assumption of a Beta distribution. Some researchers (Backus and
Zin, 1993) believe that long memory in a "nancial time series is spread from the
aggregate variables, such as in#ation rate, with their long memory again due to
aggregation. Yet no study has been done along these lines.

We propose in this paper that regime switching causes long memory in stock
market volatility. This argument is an extension of the argument in Lamoureux
and Lastrapes (1990), Hamilton and Susmel (1994), and Cai (1994), among
others. All of these papers suggest that regime switching may be the main reason
for the persistence of the volatility. We carry their argument a little further and
suggest that persistence in the form of long memory is also caused by regime
switchings. Based on the regime switching argument, we build a model that
contains a regime switching part, and show that this model can yield persistence
in the form of long memory in its volatility. We will examine the empirical
relevance of the model in the next section.

Since the discovery of long memory in volatility, a variety of models have
been used to model this long memory by various researchers. Among the most
prominent of these models is the FIEGARCH model by Bollerslev and Mikkel-
sen (1996) and the long memory stochastic volatility model (LMSV) by Harvey
(1993). The regime switching understanding of long memory allows a totally
di!erent way of modeling long memory in the volatility of stock market returns.
Instead of employing the ARFIMA process in the volatility, in this paper, we
adapt the regime switching argument in Section 1 to the stochastic volatility
model. If we denote the innovation of price changes as u

t
, and the market

volatility as v
t
"ewt , we will have

u
t
"ewte

t
, (13)

where w
t

is the regime switching variable bearing an interarrival structure
satisfying Assumption 1.2 and independent of e

t >
e
t
is i.i.d. with mean 0 and "nite
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variance. Here we assume, for analytical convenience, that the interarrival time
is independent of the volatility regime switching variable w

t
. We may occa-

sionally denote e
t

as e
k,s

, where k denotes that the epoch t is in the kth
regime, and s denotes the spent waiting time of the current regime. Sub-
sequently, we will call the above model the regime switching stochastic volatility
(RSSV) model.

Because of the independence of e
t
, it is easy to see that the correlation between

di!erent time points of the time series u
t
is 0, and the price series integrated from

u
t
is a martingale. Applying Lemma 1.1, the model has the ability to yield long

memory in volatility if w
t
satis"es Assumption 1.1. As in Ding et al. (1993) and in

Harvey (1993), we can also look at the autocorrelation of the time series, Du
t
D. Du

t
D

can be written as follows:

Du
t
D"ewtE(De

t
D)#ewt(De

t
D!E(De

t
D)). (14)

Because the correlation between the "rst term and the second term is 0, and the
second term has a time series autocorrelation 0, the autocorrelation of Du

t
D

depends on the autocorrelation of the "rst term ewtE(De
t
D). Lemma 1.2 implies

that ewt is a regime switching variable satisfying Assumption 1.1, as w
t
is such

a variable. Therefore, the absolute series exhibits long memory with d"1!a/2.
This line of argument can easily be extended to other power series of u

t
or some

other transformation of the series. The above discussion is put in Theorem 2.1.

Theorem 2.1. If the regime duration of our RSSV model satisxes Assumptions 1.1
and 1.2, there is long memory in the volatility series with a magnitude of
d"1!a/2.

The rest of this section will be devoted to the temporal aggregation of the
above model. It is interesting to see that, regardless of regime switching and even
in a quite peculiar way, we still have Brownian motion as our limit instead of
any jump process as the sample size goes to in"nity. Also, even when we have
long memory in volatility, the long term dependence does not show at all with
the temporal aggregation limit.

It has been shown by Diebold (1988) and Drost and Nijman (1993) that the
temporal aggregation of any ARCH model should roughly converge to
Brownian motion, although with high-frequency data the ARCH structure gives
us high leptokurtosis (see the result by De Haan et al., 1989). An interesting
question in the current context is whether temporal aggregation can preserve the
high leptokurtosis with the regime switching stochastic volatility model. A ten-
tative suggestion is that the temporal aggregation should be stable motion given
that the mean counterpart converges to stable motion, and the following
theorem says the contrary.
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10We have tried to establish the weak convergence without success.

Theorem 2.2. Given a regime switching stochastic volatility model satisfying As-
sumption 1.1, the stock variable

u6
t
"

t
+
i/0

u
i
"

n
+
i/1

v
i
e
i

for t"1, 2,2,¹ (15)

converges to Brownian motion in xnite-dimensional distribution10 if we normalize it
by the square root of the sample size, i.e. p~1e ¹~1@2.

Proof. The proof is carried out in two steps. In the "rst step, we show that
u6
*Tt2 +

!u6
*Tt1 +

can be equalized with a summation of ¹(t
2
!t

1
)/k terms of the

independent variables with a structure as +Si`1~1
t/Si

v
i
e
t
in probability. Then since

the above term can be considered as the summation of i.i.d. terms with "nite
variance k, which is the mean of the interarrival time, we can employ the central
limit theorem to prove that it converges to a normal variable. The independence
follows from the 0 correlation.

(1) It is clear that

u6
t
"Av0

S0

+
i/1

e
0,i

#

k(t)~1
+
k/1

v
k

Tk

+
i/1

e
k,i
#v

k(t)~1

t~Sk(t)~2

+
i/1

e
k(t)~1,i

!v
k(t)~1

Tk(t)~1

+
i/1

e
k,iBI(S0

(¹)#v
0

T
+
i/1

e
0,i

I(S
0
*¹).

We can prove that all the other terms vanish except the term
R

2
(t)"+k(t)~1

k/1
v
k
+Tk

i/1
e
k,i

when they are normalized by ¹~1@2. We will denote
the above "ve parts as R

1
, R

2
, R

3
, R

4
, and R

5
, respectively. And we will prove

that only R
2

remains in probability after normalization.
Firstly, R

1
converges to 0 in mean square,

varR
1
"p2

v

E[S
0
I(S

0
(¹)]

¹

P¹1~a. (16)

The convergence follows from the probability structure of S
0
. See Feller (1971,

pp. 311}315). And R
1

does converge to 0.
In a similar fashion, R

3
and R

4
can be proved to be negligible. R

5
converges

to 0 as I(S
0
*¹) is a negligible event. We have

varR
5
"

p2
v

P(S
0
*¹)

P¹1~a. (17)
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If we de"ne Q
j
(¹)"+k(*sjT+)

k/k(*sj~1T+`1
v
k
I(S

0
)s

j~1
¹)+Tk

i/1
e
k,i

, the fact that there
is no di!erence between a corresponding R

2
term and Q

j
(¹) enables us to see

that the "nite-dimensional distribution of x([s
j
¹])!x([s

j~1
¹]) is determined

by Q
j
(¹).

If we de"ne that >
N
"+N

k/1
v
k
+Tk

i/1
e
k,i

and Q@
j
(¹)"(>

*k~1
sjT+

!

>
*k~1

sj~1T+
)I(S

0
)s

j~1
¹) and e@

j
(¹)"Q

j
(¹)!Q@

j
(¹), then, if we apply Theorem

7.3.2 of Chung (1973), e@
j
(¹) vanishes.

Because the Q@
j
(¹) are independent and since u6

*Tsj +
!u6

*Tsj~1+
do not di!er in

distribution, we have

¹~1@2(u6
*Ts1 +

, u6
*Ts2 +

,2, u6
*Tsn +

)
n
P B(s

1
, s

2
,2, s

n
), (18)

where
n
P denotes convergence in "nite distribution. h

3. Estimation and empirical results

The RSSV model is theoretically capable of giving rise to long memory in
volatility, but is this theoretical result empirically relevant? First, we want to
know how well this RSSV model explains the overall complex dynamics of stock
prices, especially when its performance is compared to other models with the
same degree of complexity. Second, and more speci"cally, we want to know how
relevant our key assumption } Assumption 1.1 } is, and how this assumption
relates to the observed long memory pattern in the volatility of stock returns.
These inference problems rely on the estimation and inference of the RSSV
model.

Unfortunately, we are not able to use MLE to estimate the RSSV model, as in
Hamilton and Susmel (1994) and Cai (1994). First, the current state is a latent
variable. Second, the probability of taking on the current state depends on the
length of time stayed in the current state, and this length of time is also a latent
variable. Then the time when we have a new regime is also latent. Consequently,
the conditional probability depends on an in"nite past. We can use the QMLE
approach, as in Sowell (1992) and Bollerslev and Mikkelsen (1996), or the
frequency QMLE approach as in Breidt et al. (1998), to estimate our model
based on the implied covariance structure of the distribution of the regime
duration. This approach only uses the data information up to the second-order
moments. A full examination of the model, however, confronts the model with
a full set of dynamics as contained in the data set. The simulation-based e$cient
method of moments (EMM) method as proposed by Gallant and Tauchen
(1996) enables us to do exactly such a full examination.
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In the following section, we will "rst set up the econometrics problem and go
over the essentials of EMM. We will then introduce the auxiliary model, the
benchmark models and the various extensions of the RSSV model. We use
benchmarks to show that our model can yield comparable performance and is
a serious contender. Finally, we will present our empirical results.

3.1. EMM estimation

In EMM, the GMM technique is combined with simulation-based methods
to estimate the coe$cients of complicated nonlinear structural models. In
particular, EMM provides a systematic and e$cient way of choosing moments
by employing the scores of the auxiliary model. It also sets up a systematic and
meaningful way of drawing inferences with a set of diagnostics. The methodo-
logy is related to the more general Indirect Inference, as proposed by
Gourieroux et al. (1993), although in that work their moments are generated
from the parameter estimates. In matching the model with data along the
dimension of scores de"ned by an auxiliary model, in addition to the delivery of
a set of estimators, EMM also provides some econometrically meaningful
metrics of the extent of the success of the examined model. It can, therefore,
pinpoint any possible inherent merits and drawbacks of the model, which
is exactly what we are concerned with. When the auxiliary model is pro-
perly chosen, the EMM estimation is as e$cient as the maximum likelihood
estimation.

Given a stationary process My
t
N generated from the underlying time-invariant

structural model p(y
~L

,2, y
0
Do), o3Rpo , with parameter oo, the EMM es-

timator o(
n

is computed as follows. Use the auxiliary model

f (y
t
Dy

t~L
,2, y

t~1
, h), h3Rph (19)

which is speci"ed in the sequel and the data My8
t
Nn
t/~L

to compute the maximum
likelihood estimate

hI
n
"argmax

h|H
1

n

n
+
t/1

log[ f (y8
t
Dy8

t~L
,2, y8

t~1
, h)] (20)

and the corresponding estimate of the information matrix

II
n
"

1

n

n
+
t/1
C

L
Lh

log f (y8
t
Dx8

t~1
, hI

n
)DC

L
Lh

log f (y8
t
Dx8

t~1
, hI

n
)D

@
, (21)

where

x8
t~1

"(y8
t~L

,2, y8
t~1

). (22)
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De"ne

m(o, h)"P2P
L
Lh

log[ f (y
0
Dy

~L
,2, y

~1
, h)]

p(y
~L

,2, y
0
Do) dy

~L
2dy

0
(23)

which is computed by averaging over a long simulation

m(o, h)G
1

N

N
+
t/1

L
Lh

log[ f (y
t
Dy

t~L
,2, y

t~1
, h)] (24)

as described above. The EMM estimator is

o(
n
"argmin

o|R
m@(o, hI

n
) (II

n
)~1m(o, hI

n
). (25)

For the asymptotics of the estimator, please see Gallant and Tauchen (1996)
and Gallant and Long (1996).

Under the null hypothesis that the model we are investigating is the correct
model, EMM criterion

C"nm@(o(
n
, hI

n
) (II

n
)~1m(o(

n
, hI

n
) (26)

is asymptotic chi-square with ph!po degrees of freedom.
One criticism of the EMM approach in the estimation of a nonlinear system

with partially observed state is that "ltered volatility could not be recovered
from the estimates. Gallant and Tauchen (1998) further develop their approach
to address this criticism with the reprojection idea.

Given the EMM estimate of system parameter o(
n
, we should like to elicit the

dynamics of the implied conditional density for observables

p( (y
0
Dy

~L
,2, y

~1
)"p(y

0
Dy

~L
,2, y

~1
, o(

n
).

De"ne

hK
K
"argmax

h|RpK

Eo( n log f
K
(y

0
Dy

~L
,2, y

~1
, h),

where f
K
(y

0
Dy

~L
,2, y

~1
, h) is the density function for the estimated auxiliary

model. Let

fK
K
(y

0
Dy

~L
,2, y

~1
)"f

K
(y

0
Dy

~L
,2, y

~1
, hK

K
).
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Theorem 1 of Gallant and Long (1996) states that

lim
K?=

fK
K
(y

0
Dy

~L
,2, y

~1
)"p( (y

0
Dy

~L
,2, y

~1
).

Convergence is with respect to a weighted Sobolev norm that they describe. We,
therefore, can use fK

K
to approximate p( . Given this approximation of p( , the

reprojected volatility is the one-step-ahead standard deviation evaluated at data
values; that is, the square root of

var(y
0
Dy

~L
,2, y

~1
)

"P [y
0
!E(y

0
Dx

~1
)]][y

0
!E(y

0
Dx

~1
)]@f

K
(y

0
Dx

~1
, hK

K
) dy

0
,

with (y
~L

,2, y
~1

)"(y8
t~L

,2, y8
t~1

) for t"0,2, n.

3.2. The auxiliary model and the score

To implement the EMM estimator we need an auxiliary model f (yDx) that "ts
the data well. The auxiliary model has been estimated using the seminon-
parametric (SNP) method developed by Gallant and Nychka (1987) and has
been applied to many studies on the stock price movements such as Gallant et
al. (1992), and Tauchen et al. (1996), among others.

The SNP density is a member of a class of parameterized conditional densities

H
K
"M f

K
(yDx, h): h"(h

1
, h

2
,2, h

lK
)N (27)

which expands H
1
LH

2
L2 as K increases. In practice, the Kth model on

the hierarchy is given by

f
K
(y

t
Dx

t~1
, h)"

MP
K
[r~1

xt~1
(y

t
!k

xt~1
), x

t~1
]N2/[r~1

xt~1
(y

t
!k

xt~1
)]

Dr
xt~1

D1@2:[P
K
(u, x

t~1
)]2/(u) du

, (28)

where P
K
(. , .) is a Hermite polynomial given as follows:

P
K
(z,x)"

Kz

+
a/0
A
Kx

+
@b@

aabxbBza, (29)

where k
x

and r
x

are the location and the scale function, respectively, and
/(z)"(2n)~1@2e~z{z@2.

The location function k
x

is a$ne in x:

k
xt~1

"b
0
#b@x

t~1
. (30)
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The scale function r
x

is a$ne in the absolute values of x:

r
xt~1

"o
0
#o@Dx

t~1
D. (31)

The vector h contains the coe$cients A"[aab] of the Hermite polynomial,
the coe$cients [b

0
, b] of the location function, and the coe$cients [o

0
, o] of

the scale function. To achieve identi"cation, the coe$cient a
0,0

is set to 1. The
tuning parameters are the number of lags in the location function (¸k ), the scale
function (¸

r
), the Hermite polynomial (¸

p
), and the degrees of the polynomial in

z (K
z
) and in x (K

x
).

3.3. Estimation model and benchmarks

Since a "nancial time series usually exhibits some autocorrelation even in its
mean, we will adjust this by a mean equation

y
t
"k

0
#k

1
y
t~1

#k
2
y
t~2

#u
t
. (32)

In all models that we "t, including the RSSV models and the other three types of
benchmark models, we will impose the same mean equation with the parameters
k
0

and k
1

and k
2
.

The RSSV model we have proposed so far can be written as

u
t
"ewte

t
, (33)

where w
t
is the regime switching variable, with the probability law of duration of

regime governed by some heavy-tail distribution ¸
T
; and the regime switching

variable taking values according to some distribution ¸
w
; e

t
is distributed

according to law ¸e . All three parts are independent. Sections 1 and 2 give us
fairly general conditions for long memory behavior, here we are more speci"c
about these laws in order to do estimations. Since we do not have much prior
knowledge on how to choose among di!erent laws of distribution for this new
model, we begin with some standard probability distributions, and explore the
potential of the RSSV model. Throughout our EMM exercise, we thus specify

w&N(k
w
, p2

w
), (34)

e&N(0, 1), (35)

Prob(¹
k
*t)"(1#ct)~a, 0(a(R, t is a integer greater than 0,

(36)

where ¹
k

denotes the duration of the regime and all the above quantities are
independent. In the duration distribution, a frames the tail behavior of the
distribution, and c controls the scale. As there are many other probability

Econom=2142=Duari=VVC

M. Liu / Journal of Econometrics 99 (2000) 139}171 155



11 b
z0

(b
c
, b

d
), b

z1
(b

c
,b

d
), b

z2
(b

c
, b

d
), b

z3
(b

c
, b

d
) can be seen to be functions of b

c
and b

d
as:

b
z0
"(b

c
#0.5b

d
)/s, b

z1
"1/s, b

z2
"b

c
/s, and b

z4
"b

d
/s, where s"(b

c
#0.5b

d
)2#1#3b2

c
#

1.5b2
d
#2[(b

c
#0.5b

d
)b

c
#0.5(b

c
#0.5b

d
)b

d
#0.7979b

d
#1.5b

c
b
d
].

distributions with potential heavy tails, we settle for this particular probability
distribution because of its numerical convenience. This distribution family
allows for the possibilities of both heavy tail and non-heavy tail. When a)1,
the duration has no mean; when 1(a(2, it has no variance and the resulting
time series exhibits the long memory property; and when a*2, the distribution
belongs to the normal attraction, and thus has less tail than in the case a(2. In
total there are seven coe$cients to be estimated in the model, namely,
o"(k

0
, k

1
, k

2
, k

w
, p

w
, c, a).

Three classes of benchmark models are used to make comparisons. We use
benchmarks to highlight points where the RSSV model is successful and to
pinpoint any possible drawbacks. They also help us to identify the di!erences
between di!erent long memory modeling techniques. We note however that it is
not our intention in this paper to establish any dominance of our model over
other contenders.

The "rst benchmark model we use is the FIEGARCH model proposed by
Bollerslev and Mikkelsen (1996). With the AR(2) mean equation (32), the rest of
the model is as follows:

u
t
"ewte

t
, e

t
is i.i.d. N(0, 1), (37)

w
t
"k

w
#(1#t

1
L)(1!/

1
L)~1(1!/

2
L)~1(1!L)~dg(e

t~1
), (38)

g(e
t
)"he

t
#c[De

t
D!E(De

t
D). (39)

Since the model has a Gaussian mean innovation e
t
, we call it FIEGARCH with

Gaussian error model. For contrast we also use a slight variation of the
FIEGARCH model, the FIEGARCH with spline error model, where, instead of
Gaussian error, e

t
will be distributed as the spline transformation of a series of

N(0, 1) variates z
t
,

e
t
"¹(z

t
), (40)

¹(z
t
)"b

z0
(b

c
, b

d
)#b

z1
(b

c
, b

d
)z

t
#b

z2
(b

c
, b

d
)z2

t
#b

z3
(b

c
, b

d
)z

t
max(0, z

t
).

(41)

To achieve identi"cation, the constraint that ¹(z
t
) has a mean of 0 and a

variance of 1 is imposed.11 When b
c

and b
d

are equal to 0, b
z0

(b
c
, b

d
)"

b
z2

(b
c
, b

d
)"b

z3
(b

c
, b

d
)"0 and b

z1
(b

c
, b

d
)"1. Given that the estimation
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method is simulation based, this particular form of error terms is #exible enough
to incorporate di!erent features of the error terms, yet causes no numerical
di$culty. For a successful use of the spline transformation errors see Gallant et
al. (1997).

The second benchmark model to be used is the long memory stochastic
volatility model as proposed in Harvey (1993). The particular form of the model
is taken from Gallant et al. (1997) and Liu and Zhang (1997), with the mean
equation as Eq. (32),

u
t
"ewte

t
, e

t
is i.i.d. N(0, 1), (42)

w
t
!k

w
"a

1
(w

t~1
!k

w
)#a

2
(w

t~2
!k

w
)#(1!L)~dr

w
(e8
t
#ce

t
), (43)

where e8
t

is an N(0, 1) error term independent of e
t
. This model is denoted as

LMSV with Gaussian error, due to the Gaussian error used for the mean
innovation e

t
. A slightly di!erent form of the model which uses the spline errors

is denoted as LMSV with spline error of the form (41).
The third benchmark, as suggested by one of the referees, is a "nite-state

regime switching extension of the second benchmark in the spirit of Hamilton
and Susmel (1994). That is, a "nite-state Markov regime switching structure is
added to the volatility term of the second benchmark

u
t
"ewte

t
, e

t
is i.i.d. N(0, 1), (44)

w
t
!wr

t
"a

1
(w

t~1
!wr

t~1
)#a

2
(w

t~2
!wr

t~2
)#(1!L)~dr

w
(e8
t
#ce

t
),

(45)

where e8
t

is an N(0, 1) error term independent of e
t
, with wr

t
as the regime

switching variable taking on three potential values (s
0
, s

1
, s

2
) as in Hamilton

and Susmel (1994) with a Markov transition matrix as following:

p"A
p
11

p
12

1!p
11

!p
12

p
21

p
22

1!p
21

!p
22

p
31

p
32

1!p
31

!p
32
B.

The parameters in the transition matrix are positive numbers taking values
between 0 and 1. In addition, the sum of the two parameters in the same row
must be less than or equal to 1. This benchmark allows a direct comparison of
heavy-tail regime switching with a Markov chain regime switching model
similar to that of Hamilton and Susmel (1994). Also, as the model contains both
long memory and regime switching components, it can address the question of
whether long memory is still a pervasive phenomenon with the presence of
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Markov regime switching in the model. Breidt et al. (1997), for example,
hypothesized that the observation of long memory can arise as a result of
a Markov chain regime switching model. Later we will call this the LMSV-
Markov-RS model when the fractional component is present and SV-Markov-
RS model when the fractional component is not present.

Besides a comparison with the di!erent benchmarks, various extensions of the
RSSV model will also be examined. In the RSSV model, the volatility autocorre-
lation functions both at the short term and the long term are determined by
the regime switching structure. This can potentially cause a con#ict between the
modeling of long-term persistence and short-term dynamics. Thus, the "rst type
of extension aims to provide a more #exible form to better accommodate the
short-term dynamics. For this purpose, we include an additional AR term in
the volatility equation and an additional term representing the leverage e!ect.
Second, even in modeling the long-term dynamics, the modeling technique here
di!ers from the ARFIMA modeling in Bollerslev and Mikkelsen (1996) and
Harvey (1993). As we remarked at the end of Section 1, the regime switching
model can generate a more volatile series than the ARFIMA model. Given the
di!erences between these two types of modeling techniques, and the fact that
the ARFIMA modeling of the long memory in volatility is successful, there may
be some unique elements in the ARFIMA modeling which our regime switching
modeling cannot capture. We thus also include, in our second extension, a long
memory term modeled in the ARFIMA way. An examination of these exten-
sions suggests venues upon which the RSSV model can be improved, and also
provides some assessment of the other modeling techniques with the heavy-tail
regime switching present.

The "rst extension of the RSSV model incorporates the features of the
stochastic volatility benchmark. We add a term ws

t
in the volatility to model

short-term dynamics,

u
t
"ewt`w

s
te
t
, e

t
is i.i.d. N(0, 1), (46)

ws
t
"a

1
ws
t~1

#rs
w
(e8
t
#ce

t~1
), (47)

where e8
t

is N(0, 1) variates and is independent of e
t
, w

t
denotes the regime

switching variable as in the RSSV model given by (36) and (38), and
the probability distribution in ws

t
is independent of the probability distribution

in w
t
. We will call this extension the RSSV AR-V model. In the second extension,

in addition to the above modi"cation, we will add the fractional integration
term

ws
t
"a

1
ws
t~1

#(1!L)~drs
w
(e8
t
#ce

t~1
) (48)

and we will call it the RSSV ARFIMA-V model.
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Fig. 1. The upper panel shows the absolute value of the innovation of the market returns. The lower
panel shows the autocorrelation pattern of the absolute stock market returns.

3.4. Empirical results

We "t the regime switching stochastic volatility model to the daily Standard
and Poor's composite price index. It spans a period from the beginning of 1928
to the end of 1995 and consists of 18,149 observations. The earlier portion of this
dataset is taken from the widely cited studies of stock market dynamics of
Gallant et al. (1992, 1993). We have extended their dataset from 1987 to 1995.
The raw data is "rst-di!erenced in its logarithm and normalized by 100 to
obtain a price change series. This series is then adjusted for systematic calendar
e!ects in location and scale, as described in Gallant et al. (1992). Fig. 1 gives
a plot of the adjusted time series and the autocorrelation pattern for the absolute
price return, which gives the now well-recognized long memory pattern.

For the auxiliary SNP model, we have used the auxiliary model used by Liu
and Zhang (1997). This model has 29 parameters with the following tuning
parameters, ¸k"0, ¸

r
"25, ¸

p
"0, k

z
"18, and K

x
"0. Twenty-six para-

meters of the model are used in modeling the volatility persistence and two are
used in modeling the higher-order dynamics. It di!ers from some previously
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Table 1
EMM tests of di!erent long memory models!

Model lo s2 df p-value Ljung}Box

FIEGARCH, Gaussian error 10 46.336 19 (0.001 234.138
FIEGARCH, spline error 12 18.928 17 0.333 234.139
Long memory SV, Gaussian error 9 39.348 20 0.006 240.640
Long memory SV, spline error 10 12.077 19 0.882 227.954
SV-Markov-RS 16 33.400 13 0.001 487.900
LMSV-Markov-RS 17 18.010 12 0.115 223.296
RSSV 7 26.483 22 0.232 223.727
RSSV and AR(1) volatility term 10 18.983 19 0.458 234.138
RSSV and ARFIMA volatility term 11 18.354 18 0.433 218.361

!lo denotes the number of parameters of the structure models. The column marked s2 gives the
value of the EMM criterion, which is a s2 statistic with degree of freedom of df. The p-value of these
statistics is shown in the next column. The column marked Ljung}Box gives the Ljung}Box
statistics on the absolute value of the model residual. The degree of freedom of the Ljung}Box
statistics is 200.

12The bimodal feature of the distribution may appear too outlandish and suggest some kind of
regime switching would help in improving the "t.

used SNP auxiliary models (see Gallant et al. (1997) for other possible SNP
auxiliary models) by including some higher-order dynamics while keeping the
very long lag of those models in its ARCH expression. It also suppresses some
moments to keep the auxiliary model simple enough. The model passes the
diagnostic test of Liu and Zhang (1997). For more details regarding the selection
of this auxiliary model, please refer to Liu and Zhang (1997). Andersen et al.
(1999) have shown with Monte Carlo experiments that EMM inference is robust
to the choice of auxiliary model in reasonably large sample. For more on the
selection of auxiliary model, please refer to their study.

Table 1 presents the "tting results for both the various RSSV models and for
the benchmark models. While the FIEGARCH with Gaussian error model and
LMSV with Gaussian error model are both rejected for the given score gener-
ator, we cannot reject the RSSV model at the 10% con"dence level. However,
both the FIEGARCH model and the LMSV model "t the stock market
dynamics well, as long as we allow thick tail error in the mean innovation. See
Fig. 2 for the estimated spline error distribution in the FIEGARCH with spline
error model.12 This corresponds well with the study of Gallant et al. (1997) and
Chib et al. (1998), where such thick tail errors have been found to be very useful
in studying stock return dynamics with the stochastic volatility model and the
GARCH model. As there as inherent jumps in the RSSV models, they do not
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Fig. 2. The estimated distribution of the spline errors in the FIEGARCH with spline error model.
The distribution can be seen to be asymmetric. A similar spline error distribution is also found in the
LMSV with spline error model.

13The model residuals are generated using the reprojection idea of Gallant and Tauchen (1998).

require thick tail errors to give volatile dynamics. The SV-Markov-RS model
yields a very large EMM criterion and is rejected as a model to "t the stock
return dynamics. The LMSV-Markov-RS model, a variation of SV-Markov-RS
incorporating the long memory feature, cannot be rejected however based on
the EMM criterion.

While the EMM criteria indicate the overall goodness-of-"t of the models, the
Ljung}Box Statistics reported in Table 1 give an indication of goodness-of-"t on
persistence of the volatility as implied by the di!erent models. A model, "tted
well in persistence and badly in high-order moments, can very well give good
Ljung}Box statistics but not a good EMM criterion. The reported Ljung}Box
statistics were generated based on the autocorrelations (up to 200 lags) of the
time series consisting of the absolute value of the model residuals (e

t
's).13 It has
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Fig. 3. Autocorrelation patterns of volatility v
t

of di!erent models, plotted based on simulation
sample size of 150,000. Solid: RSSV model; dotted: LMSV-Markov-RS; short dashed: LMSV with
Gaussian error; long dashed: FIEGARCH with Gaussian error. We have omitted the autocorrela-
tion patterns of the other models because of their similarities with those depicted in the "gure.

a chi-square distribution with 200 degrees of freedom. Most of the models
presented in the table "t the persistence well enough with the exception of the
SV-Markov-RS model, which again shows the inability of this model to "t
the volatility persistence. In Fig. 3, we plot the autocorrelation pattern of the
volatility of four di!erent models. They do not di!er too much and all exhibit
the typical long memory feature. Other models with long memory terms also
show a similar autocorrelation pattern in the volatility.

While the RSSV model "ts the data reasonably well, the introduction of short
memory dynamics such as the AR(1) component in the RSSV AR-V model also
seems to be helpful. As a matter of fact, if we hypothesize that the short-term
dynamics part is unnecessary in the RSSV AR-V model, then the hypothesis can
be rejected at the 10% con"dence interval. The EMM criterion di!erence
between the RSSV model and the RSSV AR-V model gives a value of 7.500 for
a s2 of degree 3, which in turn gives a p-value of 0.058. The introduction of the
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fractional integration term, however, does not seem to help much. This can be
seen from the trivial improvement of the EMM criterion in Table 1.

Table 2 gives the parameter estimates for each individual model and their
criteria-di!erence con"dence interval. The estimates for the long memory coe$-
cients are of most interest, including the parameter d in the LMSV models, the
FIEGARCH models and the RSSV ARFIMA-V model and a in the RSSV
models. The long memory coe$cients a, in the RSSV models, are highly
signi"cant and have a similar magnitude as 2!2d in both the FIEGARCH
model and the LMSV model, as predicted by Theorem 1.1. Based on a 95%
con"dence interval, we are not able to reject the existence of heavy-tail regime
switching in the volatility. This suggests that regime switching with a heavy-tail
modeling of the long memory is able to deliver the same magnitude of long
memory as the ARFIMA modeling in the volatility. Also, with a heavy-tail
regime switching volatility structure, the persistence level, as characterized by
a
1

in the RSSV AR-V model and a
1

and d in the RSSV ARFIMA-V model, is no
longer signi"cant.

We now turn to a discussion of the potential relationship between Markov
regime switching and long memory. We "rst look at the parameter estimates of
the SV-Markov-RS model. A very high transition probability of returning to the
same state is found with 2 out of 3 volatility states. In addition, even with this
very high persistence in di!erent volatility states, the persistence level in the
volatility equation as characterized in a

1
is greater than 0.9. According to the

Ljung}Box statistics in Table 1, the model does not "t the observed persistence
in market volatility. This result stands in contrast to the result in Hamilton and
Susmel (1994), where a smaller a

1
is reported with a similar model. We note,

however, that this study uses almost 10 times more data points than (about three
times more in terms of length of time and daily series) the study of Hamilton and
Susmel (1994). And a large sample size typically improves inferences regarding
persistence. In the LMSV-Markov-RS model, the long memory feature is added
to the SV-Markov-RS model. With the addition of long memory, the LMSV-
Markov-RS model yields and EMM criterion with a p-value around 10%, and
the regimes no longer appear as persistent when compared with the SV-
Markov-RS model. Therefore, the drastic improvement of the EMM criterion
with the addition of the long memory term provides empirical evidence in
support of Theorem 1.2, where the Markov regime switching model is proven
unable to generate a long memory pattern in large sample.

Fig. 4 shows the regime switching pattern as implied by the RSSV model. This
particular regime switching pattern is generated from the RSSV AR-V model.
We do not present other regime switching patterns because they are similar to
those in Fig. 4. One notable feature of the duration distribution is the size of
the tail. There are a few long-lasting regime durations that generate the tail
of the long memory pattern in Fig. 4 according to Theorem 2.1. There are also
many short durations. As a matter of fact, the median of all the durations is only

Econom=2142=Duari=VVC

M. Liu / Journal of Econometrics 99 (2000) 139}171 163



T
ab

le
2

F
it
te

d
pa

ra
m

et
er

es
ti
m

at
es

fo
r

va
ri
o
u
s

m
o
de

ls
!

R
eg

im
e

sw
it
ch

in
g

st
o
ch

as
ti
c

vo
la

ti
li
ty

m
o
de

ls

R
SS

V
R

S
SV

A
R

-V
R

SS
V

A
R

F
IM

A
-V

o(
(o(

0.
02

5
,
o( 0

.9
75

)
o(

(o(
0.
02

5
,
o( 0

.9
75

)
o(

(o(
0.
02

5
,
o( 0

.9
75

)

k 0
0.

04
1

(0
.0

41
,
0.

04
8)

0.
05

4
(0

.0
54

,0
.0

57
)

0.
05

1
(0

.0
45

,
0.

05
9)

k 1
0.

06
7

(0
.0

52
,
0.

08
0)

0.
04

8
(0

.0
48

,0
.0

58
)

0.
05

0
(0

.0
35

,
0.

08
1)

k 2
0.

02
9

(0
.0

16
,
0.

03
7)

0.
03

5
(0

.0
26

,0
.0

35
)

0.
03

5
(0

.0
09

,
0.

04
9)

k w
0.

02
1

(0
.0

20
,
0.

03
6)

0.
02

5
(0

.0
20

,0
.0

40
)

0.
02

4
(0

.0
11

,
0.

04
5)

p w
0.

46
1

(0
.4

59
,
0.

46
2)

0.
46

3
(0

.4
56

,0
.4

72
)

0.
46

3
(0

.4
59

,
0.

47
0)

c
0.

60
5

(0
.6

01
,
0.

71
0)

0.
60

5
(0

.6
01

,0
.7

10
)

0.
60

5
(0

.6
02

,
0.

71
0)

a
1.

04
7

(1
.0

11
,
1.

20
5)

1.
05

0
(1

.0
20

,1
.1

55
)

1.
04

6
(1

.0
05

,
1.

17
4)

a 1
0.

13
0

(!
0.

02
0,

0.
43

0)
0.

10
1

(!
0.

23
0,

0.
56

2)
c

!
50

.8
08

(!
14

0.
45

0,
24

.3
52

)
!

50
.8

46
(!

14
5.

40
4,

25
.3

00
)

rs w
1.

31
0e

!
4

(3
.5

e!
7,

0.
00

7)
1.

26
6e

!
4

(3
.4

e!
7,

0.
00

6)
d

0.
11

1
(!

0.
13

0,
0.

26
0)

D
i!

er
en

t
lo

n
g

m
em

o
ry

st
o
ch

as
ti
c

vo
la

ti
li
ty

m
o
de

ls

L
o
n
g

m
em

or
y

SV
w

it
h

G
au

ss
ia

n
er

ro
rL

o
ng

m
em

o
ry

SV
w

it
h

sp
li
n
e

er
ro

r

o(
(o(

0.
02

5
,
o( 0

.9
75

)
o(

(o(
0.
02

5
,
o( 0

.9
75

)

k 0
0.

04
3

(0
.0

34
,
0.

05
4)

0.
05

3
(0

.0
53

,0
.1

21
)

k 1
0.

08
6

(0
.0

76
,
0.

09
6)

!
0.

08
8

(!
0.

29
6,
!

0.
08

7)
k 2

!
0.

06
2

(!
0.

07
4,
!

0.
05

8)
0.

07
2

(!
0.

02
9,

0.
17

3)
k w

!
0.

06
7

(!
0.

09
0,
!

0.
04

3)
!

0.
02

7
(!

0.
11

1,
!

0.
02

7)
r w

!
0.

06
0

(!
0.

06
3,
!

0.
05

6)
0.

03
4

(0
.0

34
,0

.0
34

)

Econom=2142=Durai=VVC

164 M. Liu / Journal of Econometrics 99 (2000) 139}171



c
0.

00
4

(!
0.

01
6,

0.
02

5)
0.

07
2

(!
0.

02
9,

0.
17

3)

b c
0.

56
1

(0
.5

60
,
0.

57
3)

b d
!

0.
89

9
(!

0.
91

2,
!

0.
88

7)
/
1

0.
87

6
(0

.8
69

,0
.8

82
)

0.
74

8
(0

.6
47

,
0.

79
8)

/
2

!
0.

41
0

(!
0.

48
6,
!

0.
35

4)
0.

20
2

(0
.1

02
,
0.

25
2)

d
0.

42
2

(0
.3

95
,0

.4
58

)
0.

50
5

(0
.4

55
,
0.

52
4)

D
i!

er
en

t
F
IE

G
A

R
C

H
m

od
el

s

F
IE

G
A

R
C

H
w

it
h

G
au

ss
ia

n
er

ro
r

F
IE

G
A

R
C

H
w

it
h

sp
lin

e
er

ro
r

o(
(o(

0.
02

5
,
o( 0

.9
75

)
o(

(o(
0.
02

5
,
o( 0

.9
75

)

k 0
0.

01
4

(0
.0

13
,0

.0
21

)
0.

07
5

(0
.0

41
,
0.

15
4)

k 1
0.

02
4

(0
.0

20
,0

.0
25

)
0.

06
9

(!
0.

05
0,

0.
20

1)
k 2

0.
01

9
(0

.0
07

,0
.0

21
)

0.
01

1
(0

.0
10

,
0.

01
2)

k w
!

0.
02

1
(!

0.
02

1,
!

0.
02

1)
!

0.
07

2
(!

0.
34

7,
0.

16
0)

h
!

0.
12

5
(!

0.
12

5,
!

0.
12

4)
!

0.
04

0
(!

0.
03

5,
0.

04
4)

c
!

0.
00

2
(!

0.
00

3,
0.

00
8)

0.
29

9
(0

.0
80

,
0.

50
1)

b c
0.

56
0

(0
.4

60
,
0.

60
1)

b d
!

0.
86

0
(!

0.
85

9,
!

0.
82

9)
/
1

0.
77

6
(0

.7
76

,0
.7

98
)

0.
89

3
(0

.3
40

,
0.

94
5)

/
2

!
0.

52
4

(!
0.

52
4,

!
0.

45
1)

!
0.

39
2

(!
0.

54
6,

!
0.

09
3)

t
1

0.
30

8
(0

.3
03

,0
.3

08
)

!
0.

39
4

(!
0.

42
2,

!
0.

34
1)

d
0.

52
2

(0
.5

14
,0

.5
37

)
0.

23
8

(0
.1

33
,
0.

47
5)

Econom=2142=Duari=VVC

M. Liu / Journal of Econometrics 99 (2000) 139}171 165



T
ab

le
2.

C
on

ti
nu

ed

D
i!

er
en

t
lo

n
g

m
em

o
ry

st
oc

ha
st

ic
vo

la
ti
li
ty

w
it
h

M
ar

k
ov

ch
ai

n
re

gi
m

e
sw

it
ch

in
g

m
o
d
el

s

W
it
h
ou

t
lo

ng
m

em
or

y
W

it
h

lo
ng

m
em

or
y

o(
(o(

0.
02

5
,
o( 0

.9
75

)
o(

(o(
0.
02

5
,
o( 0

.9
75

)

k 0
0.

05
2

(0
.0

34
,
0.

05
4)

0.
04

9
(0

.0
43

,
0.

05
7)

k 1
0.

01
0

(0
.0

76
,
0.

09
6)

!
0.

00
5

(!
0.

00
5,

0.
00

5)
k 2

0.
01

2
(!

0.
07

4,
!

0.
05

8)
0.

00
6

(0
.0

05
,
0.

01
5)

s 0
!

0.
09

8
(!

0.
09

0,
!

0.
04

3)
!

0.
03

6
(!

0.
04

2,
!

0.
03

0)
s 1

0.
06

5
(0

.0
31

,
0.

07
3)

0.
04

4
(0

.0
36

,
0.

05
2)

s 2
0.

21
2

(0
.1

63
,
0.

29
3)

0.
28

2
(0

.2
74

,
0.

28
6)

p 11
0.

95
2

(0
.9

21
,
0.

98
9)

0.
84

0
(0

.7
60

,
0.

87
3)

p 12
0.

01
2

(0
.0

05
,
0.

01
6)

0.
00

0
(0

.0
00

,
0.

00
1)

p 21
0.

00
9

(0
.0

02
,
0.

01
8)

0.
22

8
(0

.1
57

,
0.

27
0)

p 22
0.

95
8

(0
.9

40
,
0.

97
8)

0.
22

1
(0

.1
23

,
0.

29
0)

p 31
0.

16
5

(0
.1

02
,
0.

19
3)

0.
19

7
(0

.1
67

,
23

3)
p 32

0.
29

2
(0

.2
60

,
32

7)
0.

26
0

(0
.2

08
,
29

9)
r w

!
0.

06
7

(!
0.

06
3,

!
0.

05
6)

!
0.

05
4

(!
0.

05
8,

!
0.

05
4)

c
!

0.
08

2
(!

0.
01

6,
0.

02
5)

!
0.

07
1

(!
0.

08
4,

!
0.

06
0)

/
1

0.
95

9
(0

.8
69

,
0.

88
2)

0.
81

9
(0

.8
13

,
0.

82
3)

/
2

0.
08

6
(!

0.
48

6,
!

0.
35

4)
0.

15
7

(0
.1

03
,
0.

21
1)

d
0.

39
9

(0
.3

88
,
0.

41
1)

!C
ol

u
m

n
o(

sh
o
w

s
th

e
pa

ra
m

et
er

es
ti
m

at
es

fo
r

th
e

co
n
ce

rn
ed

p
ar

am
et

er
s.

C
o
lu

m
n

(o(
0.
02

5
,
o( 0

.9
75

)
gi

ve
s

th
e

co
n
"
d
en

ce
in

te
rv

al
s

o
f
th

e
es

ti
m

at
es

.T
h
es

e
ar

e
ge

n
er

at
ed

b
y

in
ve

rt
in

g
th

e
E
M

M
cr

it
er

io
n

d
i!

er
en

ce
.F

or
ex

am
pl

e,
a

p
oi

nt
as

so
ci

at
ed

w
it
h

o( 0
.9
75

is
gi

ve
n

b
y

th
e
p
o
in

ts
u
ch

th
at

th
e
d
i!

er
en

ce
o
fE

M
M

cr
it
er

ia
ev

al
ua

te
d

at
di
!
er

en
t
p
oi

n
ts

gi
ve

s
a

va
lu

e
of

s 0.
97

5
(1

).

Econom=2142=Durai=VVC

166 M. Liu / Journal of Econometrics 99 (2000) 139}171



Fig. 4. The projected/reprojected volatility estimate with the estimated model: (a) equally weighted
MA(4) of squared AR(2) residuals; (b) the auxiliary SNP model; (c) the FIEGARCH model with
Gaussian error; (d) the FIEGARCH model with spline error; (e) the long memory stochastic
volatility model with Gaussian error; (f) the long memory stochastic volatility model with spline
error; (g) the long memory stochastic volatility with Markov regime switching model; (h) the regime
switching stochastic volatility model.

2 days. The existence of these many short durations suggests that it is rather
di$cult for a volatility regime to establish itself and should not cause much
alarm. As we can see from Theorem 2.1, in the RSSV model, the persistence, or
the impact of a particular regime on the persistence, arises through the length of
that regime. The large number of short regimes is weighted with the very short
durations of these regimes. Consequently, even though there are many short-
duration regimes, only those long-duration regimes count in generating the long
memory pattern of persistence.

In practice, people often like to forecast volatility with a model. Within the
setting of an RSSV model, this can be done by applying the idea of reprojection.
The reprojected volatility "gure can be used in any setting when a volatility
number is needed. In Fig. 5, we show the volatility estimate of di!erent models
together with an equally weighted MA(26) estimate of the volatility. As we can
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Fig. 5. The empirical distribution of the regime duration, plotted according to a simulation size of
150,000.

see, RSSV, LMSV-Markov-RS, and FIEGARCH all generate similar volatility
estimates. The heavy-tailed regime switching in the volatility of the RSSV model
can therefore generate a good "t while providing enough structure to yield
a useful volatility prediction.

4. Conclusion and future research

As Mandelbrot (1963) stated: `2large changes tend to be followed by large
changes } of either sign } and small changes by small changes2a. This is the
so-called volatility clustering phenomenon. The persistence characteristic of this
phenomenon has even been shown as long memory in several recent studies.
While previous researchers tended to use the fractional integration structure to
model this phenomenon, we interpret the observed persistence as arising from
volatility regime switchings, which are in turn triggered by di!erent news
arrivals. We show that when the duration of the regime has a heavy-tail
distribution, we do indeed have the long memory behaviour. This paper thus
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provides an interesting and intuitively appealing interpretation of the observed
long memory behavior in stock market volatility.

The above rationale for generating long memory is then examined using the
regime switching stochastic volatility (RSSV) model. With the model containing
a regime switching part in its volatility, the empirical work could potentially
refute or fail to refute our regime switching conjecture. Using the newly pro-
posed e$cient method of moments, for the S&P composite return series, we "nd
evidence in support of the assumption of a heavy-tail distribution with the
duration of a regime. The model is found to "t the dynamics of the stock prices
extremely well and the estimated tail index is highly signi"cant. We thus cannot
reject either the hypothesis that all the observed characteristics of the data as
captured by the #exible seminonparametric model is actually generated by the
RSSV model or the proposition that the observed long memory pattern is
related to the regime switching.

Long memory exists in other dimensions of the economic system as well.
Exchange rates, interest rates and the prices of di!erent commodities have all
been shown to exhibit long memory behavior (see Baillie, 1996). It will be
interesting to see the empirical relevance of the regime switching argument in
explaining the persistence of the above series. More work towards understanding
the mechanism of regime switching, especially the duration structures of regimes
along the lines of Gourieroux and Monfort (1992), will be interesting as well.

5. For further reading

Liu, 1996.
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