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Fractional differencing

By J. R. M. HOSKING
- Institute of Hydrology, Wallingford, Oxfordshire

SUMMARY

The family of autoregressive integrated moving-average processes, widely used in time
series analysis, is generalized by permitting the degree of differencing to take fractional
values. The fractional differencing operator is defined as an infinite binomial series
expansion in powers of the backward-shift operator. Fractionally differenced processes
exhibit long-term persistence and antipersistence; the dependence between observations
a long time span apart decays much more slowly with time span than is the case with the
more commonly studied time series models. Long-term persistent processes have
applications in economics and hydrology; compared to existing models of long-term
persistence, the family of models introduced here offers much greater flexibility in the
simultaneous modelling of the short-term and long-term behaviour of a time series..

Some key words: Autoregressive integrated moving-average process; Fractional differencing; Long-term
persistence; Time series.

1. INTRODUCTION

Most of the recent work in time series analysis has been concerned with series having the
property that observations separated by a long time span are independent or nearly so.
Yet in many empirical time series, particularly those arising in economics and hydrology,
the dependence between distant observations, though small, is by no means negligible.
Such series appear to exhibit cycles and changes of level of all orders of magnitude, and
their spectral densities increase indefinitely as the frequency decreases to zero (Adelman,
1965; Granger, 1966). Indeed, such ‘long-term persistence’ is perhaps best characterized
by the occurrence of a spectral density behaving like w?, d <0, as w - 0 (Cox, 1977).

The practical use of long-term persistent time series models has been described by
Lawrance & Kottegoda (1977). As yet, however, there is still a need for a family of models
which have all the desirable properties of:

(1) explicitly modelling long-term persistence;

(2) being flexible enough to explain both the short-term and long-term correlation
structure of a series;

(3) enabling synthetic series to be easily generated from the model.

The aim of the present paper is to introduce a family of models which does meet these
requirements, by generalizing the well-known ARIMA (p, d, g) models of Box & Jenkins
(1976). The generalization consists of permitting the degree of differencing d to take any
real value rather than being restricted to integral values; it turns out that for suitable
values of d, specifically 0 < d < %, these ‘fractionally differenced’ processes are capable of
modelling long-term persistence.

An outline of the paper is as follows. In §2 we derive heuristically the fundamental
fractionally differenced process, the ARIMA (0, d,0) process, also known as fractionally
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differenced white noise. In §3 we give some of the basic properties of the ARIMA (0, d, 0)
process and describe in more detail the behaviour of the process for values of d in the range
—% < d < . In §4 the general ARIMA (p, d, q) family is defined and in §5 the properties of
some of the simpler processes in the family are described. Section 6 contains an outline of a
procedure for identification of fractionally differenced models and comments on some
other possible generalizations of ARIMA (p, d, q) processes.

2. DERIVATION OF FRACTIONALLY DIFFERENCED WHITE NOISE

Brownian motion is a continuous time stochastic process B(t) with independent
Gaussian increments and spectral density w ~ 2. Its derivative is the continuous-time white
noise process, which has constant spectral density. Fractional Brownian motion, Bg(t),
defined by Mandelbrot (1965) and Mandelbrot & van Ness (1968), is a generalization of
these processes. The basic properties of fractional Brownian motion are:

(i) fractional Brownian motionwith parameter H,usually 0 < H < 1,is the({ — H)th
fractional derivative of Brownian motion, the derivative being defined in the
Weyl or Riemann—Liouville senses (Mandelbrot & van Ness, 1968);

(ii) the spectral density of fractional Brownian motion is proportional to w ~2H71;

(iii) the covariance function of fractional Brownian motion is proportional to
| k|25

The continuous-time fractional noise process is then defined as B(t), the derivative of
fractional Brownian motion; it may also be thought of as the (4 — H)th fractional derivative
of continuous-time white noise, to which it reduces when H = 1. Technically, the
derivative exists only in the sense of a random Schwartz distribution, but the
mathematical details of continuous time processes do not concern us here.

We seek a discrete time analogue of continuous-time fractional noise. One possibility is
discrete-time fractional Gaussian noise, proposed by Mandelbrot & Wallis (1969), which is
defined to be a process whose correlation function is the same as that of the process of unit
increments ABg(t) = By(t) — Bgy(t —1) of fractional Brownian motion. Here, however, we
investigate a different approach; we look for a discrete time version of (i) rather than (iii)
of the properties of fractional Brownian motion given above.

The discrete time analogue of Brownian motion is the random walk, or ARIMA (0, 1, 0)
process, {z,}, defined by

Vo, = (1-B)z, = a,,

where B is the backward-shift operator defined by Bz, = x,_ and the a, are independent
identically distributed random variables. The first difference of {x,} is the discrete-time
white noise process {a,}. By analogy with the above definition of continuous-time white
noise we define fractionally differenced white noise with parameter H to be the (3 — H)th
fractional difference of discrete-time white noise. The fractional difference operator V* is
defined in the natural way, by a binomial series:

Vi=(1-B)= § (Z)(—B)"= 1—dB—13d(1—d)B?>—%d(1—d)(2—d)B*>— ....
k=0
(2-1)
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We write d = H — 3, so that continuous-time fractional noise with parameter H has as its
discrete time analogue the process z, = V™ ‘a,, or V%, = a,, where {a,} is a white noise
process. We call {x,} an ARIMA (0, d, 0) process, a natural extension of the terminology of
Box & Jenkins (1976) to nonintegral d. Apart from a passing reference by Granger (1978),
fractional differencing does not appear to have been previously mentioned in connexion
with time series analysis.

3. THE ARIMA (0, d,0) PROCESS
We formally define an ARIMA (0, d, 0) process to be a discrete-time stochastic process {z,}
which may be represented as

d,. _
Véz, = a,

where the operator V¢ is as defined in (2:1) and the white noise process {a,} consists of
independent identically distributed random variables with mean zero and variance o2.
The following theorem gives some of the basic properties of the process, assuming for
convenience that o2 = 1.

THEOREM 1. Let {x,} be an ARIMA (0,d, 0) process.
(a) When d <%, {x,} is a stationary process and has the infinite moving-average
representation

v, =¢(B)a, = 2 a4,
k=0

where
d1l+d)...(k—1+d) (k+d—1)!
k! Cokld—1)!

K=

(31)

Ask = o0, ~ k7 )(d—1)!.
(b) When d > —%, {z,} is invertible and has the infinite autoregressive representation

0
a(B)x, = 2 mx,_y = a,
k=0

where

—d(l=d)...(k—1—d) (k—d—1)!
Ty = =

k! Skl (—d—1)!

Ask > o, m ~ k™Y (—=d—=1)\. In parts (c)—(f), we assume that —% < d < }.
(¢) The spectral density of {x,} is s(w) = (2sintw) 2 for0 < w < mand s(w) ~ 0~ 2% as
w — 0. '
(d) The covariance function of {x,} is
(= D¥(—2d)!

=F ) = .
Yk (0, 2, i) (h—d)! (—k—d)! (3-2)
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and the correlation function of {x,} is

=Dk
Pk—')’k/')’o_ (d—l)'(k—d)' ( - Y, L 7"')7
d(l+d)...(k—1+d
o= T L k=12,

T (1-d)2—d)... (k—d)
In particular yo = (—2d)! /{(—d)!}* and p, = d/(1—d). Ask — oo,

(=) ey
(e) The inverse autocorrelations of {x,} are
L dtk—dent o,
T A=) (k+d)! (—d—1)!
as k — oo.
(f) The partial correlations of {x,} are
b =d/(k—d) (k=1,2,..)). (3:4)

Proof. (a) Writing x, = y(B) a,, we have (z) = (1 —2)"%. When d < } the power series
expansion of ¢(z) converges for |z| < 1 and so {,} is stationary. Binomial expansion of
(1—2)"% gives (3-1). As k —> oo, (k+d—1)!/k! ~ k*~* by Stirling’s formula.

(b) The proof is similar to (a) but with d replaced by —d.

(¢) Since 62 = 1, we have s(w) = (') h(e ~'?). The result follows on substitution of
P(z) = (1—2)7".

(d) Since o2 = 1, we have

Yi = w_lf cos (kw) s(w) dw.
0

Result (3-2) now follows from a standard result for

J (sin )~ ! cos (ax) dx

0
(Gradshteyn & Ryzhik, 1965, p. 372). The other results follow immediately.
(e) The inverse correlations of the ARIMA (0, d, 0) process V¢ z, = a, are the same as the

correlations of the ARIMA (0, —d, 0) process y, = V?a, (Chatfield, 1979, p. 366). Thus the
result follows from part (d) of the theorem.

(f) The relationship between correlations and partial correlations is given by the
Levinson—Durbin algorithm (Box & Jenkins, 1976, p. 84). Values for the partial
correlations ¢,, = d/(k—d) and the partial linear regression coefficients

~ (Ic)(j—d—l)!(k—d—j)!
=~ §) (—d—1)! (k—d)!

may be proved by induction on k using the algorithm.




Fractional differencing 169

From the theorem we see that when —} < d < 4 the process {z,} is both stationary and
invertible. Both i, and =, decay hyperbolically, rather than showing the exponential
decay characteristic of an ARIMA (p, 0, ¢) process. The behaviour of the spectrum at low
frequencies indicates that for d > 0 {x,} is a long-term persistent process. Long-term
persistence may also be characterized by the hyperbolic decay (3-3) of the correlation
function; (3-3) also implies that {z,} is asymptotically self-similar, as defined by
Mandelbrot (1965). Unlike the case of an ARIMA (p, 0, ¢) process, the partial correlations
and inverse correlations of {z,} decay hyperbolically and at different rates; indeed the
partial correlations of {x,} decay as k™!, which is independent of d. This seems surprising
at first sight, but the distinction between different values of d is in fact made by the
behaviour of the partial linear regression coefficients ¢,; for 1 < j < k: we have, as
j, k — oo with j/k — 0,

bij ~ _j-d_l/(_d—l)L

McLeod & Hipel (1978) define a stationary process as having a long or short memory
according to whether its correlations have an infinite or a finite sum. Theorem 1 implies
that for 0 < d < 4 the ARIMA (0, d, 0) process is a long-memory stationary process.

An ARIMA (0, d, 0) process, where d is any real number, may be summed or differenced a
finite integral number of times until d lies in the interval [ —4,4] and will then be
stationary and invertible, exceptifd = + 3, when the final process will be either stationary
or invertible but not both. This range is the most useful set of values of d, so that we
consider these processes in more detail.

When d = }, the spectral density of the process is

s(w) = 1/{2sin (}w)} ~ 0~ *

asw — 0. Thus the ARIMA (0, 3, 0) process is a discrete-time ‘1/fnoise’ (Mandelbrot, 1967).
The formal infinite moving-average representation of the process, z,=
(1—B) *a, = %, ¢, a,_, has ¢, ~ (vk)"* as k > co. Thus Zy? ‘just fails to converge’,
so that {z,} is ‘just nonstationary’. However, {z,} is invertible: we have

(1~4B—$B> ~ 1B —3sB* ~ .. )z, = a,

the weights =, behaving like —1z ¥k %2 as k > oo.

When 0 < d < 4, the ARIMA (0, d, 0) process is a stationary process with long memory,
and as such may be expected to be useful in modelling long-term persistence. The
correlations and partial correlations of {x,} are all positive and decay monotonically and
hyperbolically to zero as the lag increases. The spectral density of {,} is concentrated at
low frequencies: s(w) is a decreasing function of w and s(w) — 00 as w — 0, but s(w) is
integrable. At low frequencies, {x,} has the spectrum of ‘affine noise’ (Mandelbrot, 1977,
p- 277); the spectrum as a whole has a shape ‘typical of an economic variable’ (Granger,
1966).

When d =0, the ARIMA (0,0,0) process is white noise, with zero correlations and
constant spectral density.

When —4%<d <0, the ARIMA(0,d,0) process has a short memory, and is
‘antipersistent’ in the terminology of Mandelbrot (1977, p. 232). The correlations and
partial correlations of the process are all negative, except p, =1, and decay
monotonically and hyperbolically to zero. The spectral density is dominated by high-
frequency components; s(w) is an increasing function of w, and vanishes at w = 0 but has
gradient + oo there.
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The ARIMA (0, —%,0) process is stationary but not invertible, so that forecasts of the
process cannot be expressed as a convergent sum of past values of the process. The
weights of the infinite moving-average representation of the process are the same as the =,
weights of an ARIMA (0, },0) process and thus decay as k~3/? for large k. The spectral
density of the process is s(w) = 2sin (3w); it tends to zero as w — 0, but, unlike the case
—3% <d <0, has finite gradient +1 at w = 0. The correlation function of the process is
pr = —1/(4k* —1); the process variance is y, = 4/7. The partial correlations of the process
are given by ¢, = —1/(2k+1).

4. THE ARIMA (p,d,q) PROCESS

The ARIMA (0,d,0) process, being a form of fractional noise, is comparable to the
fractional Gaussian noise process of Mandelbrot & Wallis (1969), and may be expected to
have similar applications in time series modelling (Wallis & Matalas, 1970). Yet in
practical problems of fitting time series models to hydrological data, the modelling ability
of fractional Gaussian noise has sometimes been claimed to be inferior to that of other
processes; see, for example, Hipel & McLeod (1978). This seems to be because fractional
Gaussian noise, having only three variable parameters, mean, variance and H, is not
flexible enough to model the wide range of low-lag correlation structures encountered in
practice; and the methods commonly used to compare modelling procedures, i.e. accuracy
of short-term forecasts, values of the Akaike information criterion, resemblance of the
correlation function of the fitted model to that of the observed series, give little emphasis
to the purpose for which fractional Gaussian noise was intended, namely modelling the
long-term behaviour of an observed series. What is required, then, is an extension of the
fractional-noise model to encompass a wider range of short-term behaviour while
retaining the eventual hyperbolic decay of the correlation function. There does not appear
to be any suitable simple modification of fractional Gaussian noise, although some ad hoc
methods have been suggested, such as the filtered moving-average process of Matalas &
Wallis (1971). But there is a very natural extension of the ARIMA (0, d, 0) process which has
the required properties; we can combine fractional differencing with the established
family of Box—Jenkins models, obtaining thereby the family of ARIMA (p, d, ¢) processes.

We formally define an ARIMA (p, d, q) process, where p and ¢ are integers and d is real, to
be a stochastic process {y,} which may be represented as ¢(B) V! y, = (B)a,, where V¢ is
the fractional-differencing operator defined in (2:1), ¢(B)=1—¢, B—...—¢,B"
6(B) =1—0, B—...—0, B?are polynomials in the backward-shift operator B, and {a,} isa
white noise process.

The reason for choosing this family of processes for modelling purposes is that the effect
of the d parameter on distant observations decays hyperbolically as the lag increases,
while the effects of the ¢ and 0 parameters decay exponentially. Thus d may be chosen to
describe the high-lag correlation structure of a time series while the ¢ and 6 parameters are
chosen to describe the low-lag correlation structure. Indeed the long-term behaviour of an
ARIMA (p, d, q) process may be expected to be similar to that of an ARIMA (0, d, 0) process
with the same value of d, since for very distant observations the effects of the ¢ and 6
parameters will be negligible. Theorem 2 shows that this is indeed so.

THEOREM 2. Let {y,} be an ARIMA (p, d, q) process. Then
(1) {y,} s stationary if d < % and all the roots of the equation ¢(z) = 0 lie outside the unit
circle;
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(2) {y,}isinvertibleif d > — % and all the roots of the equation 0(z) = 0 lie outside the unit
circle.
If {y,} is stationary and invertible, with spectral density s(w) and correlation function p,,
then
(3) lim w?? s(w) exists, as w — 0, and is finite:
(4) lim k' =29 p, exists, as k — oo, and is finite.

Proof. (1) Writing y, = §(B)a,, we have (z) = (1 —z) " 0(z)/¢(z). Now the power series
expansion of (1 —z) ™% converges for all | 2 | < 1 when d < 4, that of 6(z) converges for all 2
and 6; since 0(z) is a polynomial, and that of 1/¢(z) converges for all |z| < 1 when all the
roots of the equation ¢(z) = 0 lie outside the circle | 2 | = 1. Thus when all these conditions
are satisfied, the power series expansion of i(z) converges for all |2| < 1 and so {y,} is
stationary.

(2) The proofis similar to (1) except that conditions are required on the convergence

of m(2) = (1 —2)' $(2)/0(z).

(3) We have
0(ei“’)¢9(e_"“’) . —d <1_01__0q>2 s 1 \—2d
w)=——{(1—-€e)(1—e"'® ~ (2sin {w)
s(w) ¢(e‘“’)¢(e"“’){( ') (1—e™ ')} [Ea— sin 3

as w — 0, which gives the required result.

(4) Let z, = {0(B)} " '¢(B)y,;, so that Viz, =a, that is x, ~ ARIMA (0,d,0); let
u, = V%y,, so that ¢(B)u, = 0(B)a,, that is u, ~ ARIMA (p, 0, ¢). Then the covariances y} of
{u,} satisfy a pth order difference equation (Box & Jenkins, 1976, p. 75), and we may write

p .
vi= 2 mel™ (j>0) (1)

for some constants o, &, with, by stationarity, | £ | < 1foralll. Now in an obvious notation
0
Y= 2 Yivi-p
j=—

and using (4'1) and (3-2) to substitute for y§ and yj we obtain after some algebra

q ’ p
yi= 2 Vivicjtvitq 2 wlF(l,d—qg—k;l—d—q—k;¢)—1}
i=—a 1=1

p
+yig S wi{F(, k—qg+d; k—q+1—d; &)—1}. (4-2)

=1

As k — oo, the hypergeometric functions F(.) in (4-2) all tend to (1 —¢;)~ ! and we find
that

=Z oy 81/(1 —&),

q
lim yi/yg = 2 vj+2
j 1

k — j=—q 1

which is a finite constant; the result follows.
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5. TWO-PARAMETER ARIMA (p, d,q) PROCESSES

In practice ARIMA (p, d, q) processes are likely to be of most interest for small values of p
and ¢, so we now consider in more detail the simplest such processes, the ARIMA (1,d, 0) and
ARIMA (0,d, 1).

The ArRIMA (1, d, 0) process is defined by (1 qSB 4y, = a,, where {a,} is a white noise
process. We write z, = (1—¢B)y, so that V'x,=a, Thus {y} is a first-order
autoregression with dlsturbances generated by an ARIMA (0, d, 0) process. We expect {y,}
to show similar long-term behaviour to {z,}, but its short-term behaviour will depend on
the value of . To ensure stationarity and invertibility of {y,} we assume |¢| <1 and
|d| < 4. The correlations of {y,} are most conveniently expressed in terms of the
hypergeometric function

ab a(a+1)b(b+l)22

cerz) =1
Plabiez) =14 et 1.2

From Theorem 2 we can deduce the following properties of {y,}.

LeMMA 1. Let {y,} be a stationary invertible ARIMA (1,d, 0) process (1—¢B)\V, = a,; let

x, = (1—¢B)y,
(@) The s and = weights of the infinite moving-average and autoregressive representations

of {y.} are given by

_ (k+d—l)!F ) b 1—d— ke ket
(k—d—2)! (1=¢)  _,_
T, = DI ~— " e 1,
o e ~

as k — 0.
(b) The spectral density of {y,} s

{2sin (Jw)} 2 w 2

1+¢2—2¢COSw (1—49)2

asw — 0.
(c) Let %, pb, v, px be the covariances and correlations of {y,} and {x,} respectively, the
latter being given by Theorem 1; then

w=y{F(,d+k; 1—d+k; $)+F(l,d—k; 1 —d—Fk; é)—1}/(1—4%),
o x{F(l,d+k; 1—d+k; ¢)+FQ,d—k; 1—d—k; $)—1}
e (=@ F(1,1+d; 1—d; ¢) |

In particular,

= (—2d)! FQ,1+d; 1—d; ¢) y_(1+¢2)F(1,d;1—d; é)— 1)
Tl are 7T sRRAG1-dig-1)
Ask - oo,
, (=d)! (1+¢) k2t
Px ~

d—1) (1—¢)? FQ,1+d; 1—d; ¢)
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For large k£ the correlation function decays hyperbolically. As ¢ varies, the lag-one
correlation p) can take any value in (—1, +1) for any value of d in [ -4, ).

The partial correlations ¢, of {y,} have a complicated form and seem of little use in
process identification. The partial correlation function jumps sharply between lags 1 and
2, and decays slowly, but not monotonically, to zero thereafter. Calculation of ¢,, for
various values of d and ¢ suggests that ¢,, ~ d/k as k — o0; see Table 1.

Table 1. Partial correlations at lagk of an ARIMA (1,d,0) process with
d = 0-2 for various values of ¢

k é=—05 ¢ =00 =01 ¢ =05 ¢ =09
1 —0-324 0-250 0-352 0711 0-968

2 0-188 0111 0-093 0-004 —0145
3 0-095 0071 0-065 0-032 —0043

4 0-064 0053 0-049 0-031 —0018

5 0048 0-042 0-040 0-028 —0:007
10 0022 0-020 0020 0-017 0-004
20 0010 0010 0010 0-009 0005
100 0-002 0-002 0-002 0-002 0-002

Example. Consider the ARIMA (1, d, 0) process with d = 0-2, ¢ = 0-5. It has p; = 0711,
0 < ¢y, < 0-04 for k > 1. So by looking at its partial correlations we might identify it as an
ARIMA (1,0, 0) process with ¢ = 0-711. But the partial correlations of the ARIMA (1,d, 0)
process, though small, are all positive and the correlation functions of the two processes
differ markedly after the first few lags; see Table 2.

Table 2. Correlations of an ARIMA (1,d,0) process with
d =02, ¢ =05 and an AR(1) process with ¢ = 0-711

Pk Pk Pk Pk
k ARIMA AR k ARIMA AR
1 0711 0711 7 0-183 0-092
2 0-507 0-505 8 0166 0-065
3 0378 0-359 9 0152 0-046
4 0296 0255 10 0141 0033
5 0243 0-181 15 0-109 0-001
6 0208 0129 20 0-091 0-000

The ARIMA (0,d, 1) process may be thought of as a first-order moving average of
fractionally differenced white noise. The process is defined by V?y, = (1 —6B)a,, where
{a,} is white noise; it is stationary and invertible for || < 1, |d| < 4. From Theorem 2 we
obtain the following results.

LEMMA 2. Let {y,} Be a stationary invertible ARIMA (0, d, 1) process; let Vix, = a,, so that
Y. = (1 —0B) x,; write vy, pi, vi, pi for the covariances and correlations of {y,}, {x,} respectively.
(@) The ¢ and = weights of {y,} are equal to the = and b weights respectively of an
ARIMA (1, —d, 0) process with autoregressive parameter 6.
(b) The spectral density of {y,} ts

s(w) = (14 6*—20 cos ) {2sin (3w)} "2 ~ (1 —0)? w2

as w — 0.
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(¢) The covariance function of {y,} is

(1—0)2k*— (1 —d){(1—d)(1+6%) —26d}

Yk = Yk

k2 —(1—d)?
and the correlation function of {y,} is
Jak? —(1—d)?
PR=Pc 77 1 2
K —(1—d)

where a = (1—0)2/{1+6*>—260d/(1 —d)}. In particular
v = {1+6>—20d/(1 —d)} (—2d)!/{(—d)!}?,

a—(1—d)? (1+6%)d(2—d)—20(1 —d+d?)

. _ .
AT 0=d)2—d) (1—d)(2—d) {1+ —20d/(1—d)} (52)
Ask - o, -
(—d)!
Voo 2d—1
P~ g™

For large k the correlation function of {y,} decays hyperbolically, while for given d the
lag-one correlation p} can take a range of values from a minimum of —(1—d)/(2—d) at
0 = +1 to a maximum of (1+d)/(2—d) at # = —1. For given values of d and p} between
these limits, the corresponding value of  may be found by solving (5-2), which is quadratic
in 6 and thus easier to solve than the corresponding equation (5'1) for an ARIMA (1,d,0)

process.

Example. Table 3 gives the correlations of an ARIMA(1,d,0) process and an
ARIMA (0,d, 1) process chosen to have the same values of d and pY. The two correlation

Table 3. Correlations of an ARIMA (1, d, 0) process withd = 0-2, ¢ = 0-366
and an ARIMA (0,d, 1) process with d = 0-2, § = —0-508

Pk Pk

k ArMA (1,4,0) ARIMA (0,d, 1)
1 0-600 0-600
2 0-384 0-267
3 0-273 0-202
4 0-213 0-168
5 0-178 0-146
10 0-111 0-096
20 0-073 0-063
100 0-028 0-024

functions behave similarly at high lags, but the ARIMA (0, d, 1) correlation function drops
more sharply between lags 1 and 2. The nonzero value of d means that the ARIMA (0,d, 1)
correlation function decays steadily towards zero from lag 2 onwards, rather than the
second and higher correlations being zero as they would for an ARIMA (0,0, 1) process.
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6. CONCLUSION

The family of ARIMA (p, d, q) processes defined in § 5 should prove useful in many fields of
time series analysis. Compared with existing models of long-term persistence, the ARIMA
family is much more flexible in the simultaneous modelling of long-term and short-term
behaviour of a stochastic process. Since the family is a generalization of the well-known
Box—Jenkins models, the existing methodology may now be applied to time series
exhibiting long-term persistence or antipersistence.

An outline of a procedure for identification and estimation of an ARIMA (p, d, ¢) model is
as follows. We write the ARIMA (p, d, ¢) model as ¢(B)V?, = 0(B)a,; we define u, = Vy,, so
that {u,} is an ARIMA (p,0,q) process, and z, = {§(B)} '¢(B)y, so that {z,} is an
ARIMA (0, d, 0) process.

(1) Estimate d in the ARIMA (0, d,0) model V%, = a,.

(2) Define u, = V?y,.

(3) Using the Box—Jenkins modelling procedure, identify and estimate the ¢ and 6

parameters in the ARIMA (p,0,q) model ¢(B)u, = 6(B)a,.

(4) Define z, = {6(B)} ~'$(B) y,.

(5) Estimate d in the ARIMA (0, d, 0) model Vi, = a,.

(6) Check for convergence of the d, ¢ and 8 parameters; if not converged go to step 2.
The estimate of d in steps 1 and 5 may be the rescaled range exponent, or R/S exponent,
used as a measure of long-term persistence by Mandelbrot & Wallis (1969) and Mandelbrot
& Taqqu (1979); alternatively, a maximum likelihood estimate of d may be obtained by
the methods of McLeod & Hipel (1978, p. 497), if we use the correlation function of an
ARIMA (0, d,0) process in their equation (38).

One of the main reasons why Mandelbrot & Wallis (1969) introduced fractional
(Gaussian noise was to enable computer generation of synthetic time series exhibiting long-
term persistance for use in hydrological simulation studies. The ARIMA (0, d, 0) process
may also be applied in this fashion; an efficient method of generation may be based on the
partial correlations of the process, since these take the simple form (3-4). The
ARIMA (1,d,0) and ARIMA (0,d,1) processes are convenient for generating long-term
persistent series having specific values of the lag-one correlation.

The processes so far considered have generalized the Box—Jenkins ARIMA (p,d,q)
processes by allowing d to take fractional values; we may also consider the possibility of
allowing p and ¢ to take fractional values. In general this is not meaningful, since p and ¢
are degrees of polynomials ¢(B) and 6(B). However, in the particular case of a polynomial
with equal roots, say ¢(B) = (1 —¢B)?, a generalization of p to fractional values may be
entertained, leading to the equal-root autoregressive process of fractional order
(1 —¢B)?y, = a,. This process and its applicability to hydrological modelling are described
by Spolia, Chander & O’Connor (1980); the covariance function of the process is, as
k — o0,

_ ulktp—1)! ) .42 ~(1_¢2)_p ky.p—1
Ve =@ k!(p_l)!F(p,k+p,’0+1,¢) 1) k"

Finally we mention two other processes involving fractional differencing which may
prove useful in applications. The fractional equal-root integrated moving-average process
is defined by V?y, = (1—0B)%a,, |q| < 4,|8| < 1; as a forecasting model it corresponds to
‘fractional order multiple exponential smoothing’. The process (1 —24B+B%)?y, = qa,,
|d| <34, |¢| <1, exhibits both long-term persistence and quasiperiodic behaviour; its
correlation function resembles a hyperbolically damped sine wave.
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