
99-14

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF ECONOMICS

OCCASIONAL STRUCTURAL BREAKS AND LONG MEMORY

BY

CLIVE W.J. GRANGER

AND

NAMWON HYUNG

DISCUSSION PAPER 99-14
JUNE 1999



1

Occasional Structural Breaks and Long Memory

Clive W.J. Granger
Namwon Hyung

Department of Economics
University of California, San Diego

9500 Gilman Drive
La Jolla, CA 92093-0508

June 1999

Abstract

This paper shows that a linear process with breaks can mimic autocorrelations and other

properties of I(d) processes, where d can be a fraction. Simulation results show that S&P

500 absolute stock returns are more likely to show the "long memory" property because

of the presence of breaks in the series rather than an I(d) process.

KEY WORDS: Occasional Structural Breaks; Long Memory; Autocorrelation

JEL classification: C22

Preliminary, Comments Welcome



2

1. Introduction

There have been several works analyzing the long-run properties of stock returns.

Granger and Ding (1995a,b) considered long return series, using the well-known

Standard and Poor’s (S&P) 500 index of about 17,000 daily observations, and established

a set of temporal and distributional properties for such series. They suggested that the

absolute returns are well characterized by long memory process, but the parameter

estimates of the long-memory model sometimes vary considerably from one subseries to

the next as shown by Granger and Ding (1996). There are several attempts to explain

these findings, such as Rydén, Teräsvirta, and Åsbrink (1998). They suggested that the

temporal higher-order dependence observed in return series may be well described by a

hidden Markov model. Such a model is estimated for the series of the S&P 500 from

1928 to 1991 which is the series considered by Granger and Ding (1996). However they

failed to explain the one stylized fact that is the very slowly decaying autocorrelation

function for the absolute returns. One possible alternative explanation for this time-

varying long-memory property in the stock market might be derived from a recent paper

of Granger and Teräsvirta (1999) using a simple nonlinear model.

The purpose of this paper is to explain the long memory property in the stock

market by extending the idea of Granger and Teräsvirta (1999). Occasional structural

breaks might cause the "long memory" property of absolute returns since Granger and

Ding (1996) examined the series from 1928 to 1991. We suspect that there were

structural changes in the absolute returns or in the volatility of returns during this long

period. If such changes exist, a stationary process that encounters occasional regime

switches will have some properties that are similar to those of a long-memory process.
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The plan of the paper is as follows. Section 2 contains considerations of temporal

properties of a linear model with occasional breaks. Section 3 introduces an estimation

method of multiple breaks at unknown dates (Bai (1997) and Bai and Perron (1998)) or

changes in variance (Inclan and Tiao, 1994). Section 4 contains our analysis of spurious

long memory properties of a simple linear model with occasional breaks in mean. In

Section 5 we discuss spurious breaks in I(d) process and overdifference caused by

removal of estimated breaks. Section 6 is devoted to an application using the S&P 500

stock returns and finally Section 7 presents some extensions of this paper and

conclusions.

2. Occasional Breaks and Autocorrelation Function

We shall consider a simple linear model with occasional breaks in mean (Chen and

Tiao (1990) and Engle and Smith (1999)).

(1) ttt my ε+=

(2) ∑ =− η+=η+= t

i iitttt qmqmm
101

where εt ∼  iid(0,σε
2), ηt ∼  iid(0,ση

2) for t = 1,...,T. Assume that qt follows an i.i.d binomial

distribution as below1:
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

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Then combining (1) and (2) yields

(4) tttt qqqmy η++η+η++ε= L22110
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One problem with the binomial model in (3) is that this model implies sudden

change only. Structural change may occur gradually. One, therefore, can use a simple

extension of (3), with qt following a regime switching model:

(3′) 




=
=

=
21
10

t

t
t swhen

swhen
q

Let st be a latent random variable with two discrete values: 1, 2. Each value of st

represents a different state in the length of memory of shock. st is assumed to be governed

by the following Markov probability law: ( )isjsp ttij === − 1|Pr . Then (1) can be solved

exactly to yield (4). In this specification, the state of st will determine if the shock of ηt is

permanent or not. A regime with st = 2 represents a period of structural change.

Now focus on the binomial case first. Assume that εt, ητ and qs are independent

for all t, τ and s. For the initial conditions, let m0 = 0, qt = 0, εt = 0 and ηt = 0 for all t ≤ 0,

then the mean of yt is ( ) 0=tyE , and its variance is

(5) ( ) 22var εη σ+σ= tpyt

Similarly, one finds that the covariance between yt and yt+k is

(6) ( ) 2,cov η+ σ= tpyy ktt

We can get the following k-th autocorrelation equation of this process,

(7) ( )
( ) 2222

2

,
εηεη

η
+

σ+σ+σ+σ
σ

=
pkttp

tp
yycorr ktt

                                                                                                                                           
1 Engle and Smith (1999) use an endogenous smooth transition function, ( ) ( )22

tttq ε+γε=γ , γ>0, to
capture different regime, i.e., random walk and stationary period.
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We can also derive properties of a sample autocorrelation function of this process. A k-th

sample autocorrelation equation is,
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
σ

σ+ →ρ
Tp

p
kT , as T →  ∞  for fixed k and 0 < Tp < ∞ .

(10) 0ˆ ,  →ρ p
kT , as T →  ∞  and k/T →  1.

In this process, Tp is an expected number of structural breaks within the sample

period T and ση
2 will be related to the size of breaks. As explained in the following

proposition, these parameters are closely linked to the basic properties of this process.

Three qualitative conclusions can be drawn and are stated in Proposition 1.

Proposition 1: A linear process with occasional breaks as described in (1) and (2) has the

following properties.

(a) Suppose that the probability of breaks converges to zero slowly as the sample size

increases (i.e., p→ 0 as T→ ∞ , yet lim Tp→ c < ∞  where c is non-zero constant)2, then a

k-th sample autocorrelation in (8), kT ,ρ̂ , converges to nonzero value for fixed k as T→ ∞ .

(b) If p > 0, kT ,ρ̂  appears to approximate the autocorrelations of an I(1) process. In fact,

since Tp increases to infinity as T increases to infinity, this process is an I(1) process.

                                               
2 For example, let R be a number of breaks for the given sample size T, then p = R/T.
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(c) When p = 0, this process is an I(0) process.

Proof: (a) As T→ ∞ , ( ) 1
, 1ˆ −∆+ →ρ p
kT , where ∆ is determined by the values of T, p, σε

2,

and ση
2 (see (9) and the 1st rows of Table 1). (b) As T→ ∞ , and Tp→ ∞ , we get 1ˆ , →ρ kT

for any fixed k. (c) If p = 0, then 0ˆ , =ρ kT  for all k. Q.E.D.

Let’s focus on the property of proposition 1(a) [spurious long-memory process] in

this following paper. Proposition 1(a) reflects the finite sample property of

autocorrelation, i.e., for T large (but finite) and Tp small but not zero, corr(yt, yt+k)

appears to approximate the autocorrelations of an I(d) process which have a slow

hyperbolic decay after the initial dropoff from k = 0 to k = 1. The autocorrelations in (8)

will not decline exponentially (even if εt of equation (1) has serial correlation), but decay

very slowly as in Table 1. Figure 1 exhibits slow hyperbolic decay of the autocorrelations

as k increases. However, it will converge to zero as usual for the linear, stationary model

or the stationary long memory model (d < 0.5) as k increases. For a given k, the sample

autocorrelation approaches a nonzero constant as T→ ∞  as shown (9).

If [Tp] is a small positive integer, a plot of yt against t shows a few breaks in level

since the value [Tp] is in some sense the expected number of breaks within the sample

period. As [Tp] increases there will be more breaks and a higher value of the sample

autocorrelation. The increase of ση
2, which means larger magnitude of breaks, has similar

effects on the autocorrelations. The intuition is that an increase of Tp or ση
2 make this

process closer to a random walk.

In the stock market, the correlogram of absolute stock return declines steadily but

not exponentially. It may start with 4.01̂ =ρ , say, and then declines only slowly from this
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value. Another stylized fact of financial data is that the correlogram is low but remains

positive for many lags3. Granger and Ding (1996) suggest a fractionally integrated model

amongst the models known to generate series having such properties. In this paper, we

are suggesting a new class of model, a linear model with occasional breaks, as possible

generating mechanism, instead of the I(d) model with a fraction d.

3. Estimation of Break Points and Number of Breaks

As discussed before, the aim of this work is to investigate the properties of time

series with multiple unknown structural breaks. This may include the case when there are

a few known breaks in a finite sample. One could deal with structural breaks in variance

in the same way. Our goal is to estimate break points, the number of breaks and their

sizes. Bai (1997) and Bai and Perron (1998) suggests sequential estimation of multiple

breaks in mean, and show that this method can estimate break points consistently with

order T even when the number of breaks in practice is unknown. To detect discrete

changes in the variance of an observed time series, we use the ICSS (iterated cumulative

sum of squares) algorithm presented by Inclan and Tiao (1994).

Bai (1997)’s procedure works as follows. When the first break point is identified at

k, the whole sample is divided into two subsamples with the first subsample consisting of

k observations and the second subsample consisting of the rest of the observations (T-k).

One then estimates a break point for the subsample where a hypothesis test of parameter

constancy is rejected. Divide the corresponding subsample further into subsamples at the

                                               
3 Granger and Marmol (1997) explain this property by using a process which consists of a stationary, long
memory component plus a white noise component of much larger variance.
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newly estimated break point, and perform parameter constancy test for the hierarchically

obtained subsamples. This procedure is repeated until the parameter constancy test is not

rejected for all subsamples. The number of break points is equal to the number of

subsamples minus 1. He shows how the sequential procedure coupled with hypothesis

testing can yield a consistent estimate for the true number of breaks.

Although asymptotic theory implies that the sequential procedure will not

underestimate the number of breaks, Bai (1997) shows by Monte Carlo simulations that

the procedure has a tendency to underestimate. This problem can be overcome by using a

two-step procedure as suggested by Bai (1997). In the first step, the goal is to obtain a

consistent (or less biased) estimate for the error variance. This can be achieved by

allowing more breaks (R), solely for the purpose of constructing the error variance. It is

evident that as long as R ≥ R0 (the true number of breaks) the error variance will be

consistently estimated. Obviously one does not know whether R ≥ R0, but the

specification of R in this stage is not as important as in the final model estimation. When

R is fixed, the R break points can be selected either by the Schwarz-Bayesian criterion

simultaneously or by the “one additional break” sequential procedure described in Bai

and Perron (1998). In the second step, the number of breaks is determined by the

sequential procedure coupled with hypothesis testing. The test statistics use the error

variance estimator obtained in the first step. The details of the test statistic and methods

were given in Bai (1997).

4. Spurious Long-Memory Property of Occasional Structural Breaks Process

Suppose that mt is the series from (2) that, when differenced once, gives the series
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( ) tttt qmLm η=−=∆ 1

which has an ARMA representation (here we assume a white noise process in (2)). mt

will then be called an integrated series, and denoted mt ~ I(1). If ∆mt has spectrum f(ω),

then mt does not strictly posses a spectrum, but from filtering considerations the spectrum

of mt can be thought of as

( ) ( ) 0,1 2 ≠ωω−=ω − fzfm

where z = e-iω. Since ∆mt is strictly ARMA with ( ) 2

2
1

ησ
π

=ω pf , then 

( ) 2
0 2

1lim η→ω σ
π

=ω pf

For small ω,

( ) 2−ω=ω cfm

where πσ= η 22pc .

Since mt is independent of εs for all t and s the spectrum of yt in (1) is then

  (11) ( ) ( ) ( ) 0,
2
1

2
11 222 ≠ωσ

π
+σ

π
−=ω+ω=ω εη

−
ε pzfff my

It follows that

(12) ( ) ccf y ′+ω=ω − 2 , for ω small.

where πσ= η 22pc , πσ=′ ε 22c .

Geweke and Porter-Hudak (1983) (henceforth GPH) show that, when attention is

confined to frequencies near zero, the differencing parameter can be estimated

consistently from the least square regression since
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( )( )
( ) df z 2

ln
ln −=

ω∂
ω∂

, with some zt ~I(d) series.

If we apply this to (12), then

( )( )
( )

1

2

2
21

ln
ln

2
1

−

η

ε






σ
σω+=

ω∂
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−
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If we evaluate at 2/1
0 2 −π=ω T  using g(T) = T1/2, which is a popular choice in GPH

estimation, then

(13) 
( )( )

( )
1

2

2
241

ln
ln

2
1~

0

−

η

ε

ω=ω






σ

σπ+=
ω∂
ω∂

−=
Tp

f
d y

where 1
~

0 << d . Of course it is true 1
~ →d  as ω →  0. However, we would get an

estimated d less than 1 only because ( )22
ηε σσ Tp  is small enough to counter-balance small

ω and an estimated d is calculated from 0 < ω < ω0 in a finite sample estimation.

In support, we conduct a Monte Carlo analysis of GPH estimation and Lobato and

Robinson's LM test (Lobato and Savin, 1998) using the series with occasional breaks.

The purpose of our Monte Carlo simulation is to investigate whether the apparent long-

run dependence could be due to occasional structural breaks in a finite sample. Instead of

inspecting the autocorrelation, an easy way to summarize these correlograms is to present

the value of the estimated d by the GPH method or Lobato and Robinson's LM statistics.

(14) ( ){ } ( ){ } jjj udcI +−= 2sin4loglog 2 λλ ,  j = 1,..., g(T).
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where ( ) ( )2

1
exp

2
1 ∑ == T

i jtj tiy
T

I λ
π

λ is the periodogram at frequency Tjj πλ 2=  which

will depend on the sample size T. The following (15) is Lobato and Robinson's LM test

statistic to test H0: d = 0 against Ha: d ≠ 0,

(15) ( ) ( )
2

11






λλ= ∑∑

==

m

j
j

m

j
jj IIvmLM

where ∑ =−= m

jj j
m

jv
1
log1log  and m = g(T).

The following two artificial data sets illustrate the long memory property of a

linear model with occasional breaks with different parameters.

Example 1: qt has a binomial distribution of (3). Length of series = 2,000, σε
2 = 1,

ση
2 = 0.25, p = 0.01. The second graph of Figure 2 plots sample autocorrelations of this

series up to lag 500. Sample autocorrelations start around 0.44 (quite close to 0.45

calculated by (8) with k = 1), but decrease very slowly with increasing lags and the

corresponding periodogram in Figure 2 clearly has a pole at the origin. These figures

might suggest that this series has long memory. By the GPH method, d̂  is 0.747 with t-

value = 6.17, a clear long memory.

Example 2: qt has a regime switching process (3′). Length of series = 2,000, σε
2 =

1, ση
2 = 0.01, p11 = 0.998, p22 = 0.99, implying unconditional probability of state 2

(break) is 0.167. A sample autocorrelation at k = 1 is 0.337 close to 0.357 calculated by

(8). The second graph of Figure 3 plots the value of qt which is determined by the state

variable, and d̂  for this series is 0.860 with t-value = 5.38. We could observe gradual

changes when st = 2.
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Estimated values of d by GPH in the simulation are presented in the 3rd rows of

Table 1 using a sample size of 2,000 and σε
2 = 1 with different values of p and ση

2.

Simliarly to Granger and Teräsvirta (1999)’s examples, this process has long-memory

rather than short-memory, if we just consider linear properties of the data. As Tp

increases there will be more breaks and a higher value of d̂  is obtained from the

regression (14). An increase of ση
2 will have similar effects on d̂  since it is more likely

that breaks are detected. Table 2 shows estimated values of d from 20 subsamples of size

1,000. The d̂ 's based on the total sample are 0.376 for Case I, 0.782 for Case II, 0.687

for Case III and 0.888 for Case IV. For Case I and III, only a few subsamples have

significant changes, so most of them look like white noise. For Case II and IV, d seems to

be time-varying, for example, going from 0.337 in period 1 to 0.204 in period 2 and upto

0.723 in period 13 in Case II. As Tp or ση
2 increase (i.e., as the number of breaks or the

size of breaks increase), a higher value of estimated d is obtained from the regression.

The value of d̂  will depend on the values of Tp or ση
2 of each subsample.

In Table 3, Lobato and Robinson’s LM test was conducted for the various values

of parameters, T = 200, p = 0.025, 0.05, 0.1, σε
2 = 1, and ση

2 = 0.001, 0.005, 0.01, 0.05,

0.1, 0.5, 1. As the value of Tp or ση
2 is getting larger, the rejection rate of the LM test is

close to 100% spuriously. The GPH shows similar results. For the same value of Tpση
2,

the rejection rates are similar. For example, when p = 0.1 (20 breaks on average within

sample) and ση
2 =0.05, the rejection rate of the LM test is 52.8% which is reasonably

close to the value, 54.4% with p = 0.05 (10 breaks) and ση
2 =0.1.
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5. Spurious Number of Breaks and I(d) Process

Nonstationarity of the DGP causes many breaks to be detected spuriously by

standard estimation methods. Unlike stationary processes, I(d) or I(1) processes would

have different effects on the estimated number of breaks. Suppose yt is generated from

( ) tt
d yB ε=−1 , when d is not an integer, 0 < d < 1, the fractional difference operator (1-

B)d defined by its Maclaurin series is,

(16) ( ) 1,1,1 01
0

=ππ−−=ππ=− −

∞

=
∑ jj
j

j
j

d

j
djBB

In Table 4, the number of breaks is estimated by Bai’s method for various values

of d in the DGP. To simulate the series it is assumed that πj = 0 for j > 1,000, and the first

2,000 observations are discarded. It is initially assumed that the maximum number of

breaks is 50 and we do not estimate a break if the size of a subsample is less than 50

observations. Figures 4-1 - 4-4 show examples of plots of I(d) processes and estimated

means of each regime: (4-1) d̂  = 0.092 (t-value = 1.04), 12 breaks, (4-2) d̂  = 0.500

(4.18), 26 breaks, (4-3) d̂  = 0.519 (5.51), 32 breaks, and  (4-4) d̂  = 0.808 (7.80), and 42

breaks. These graphs clearly suggest a positive relation between the number of breaks

and the value of d as in the Table 4. After removing the break component from the

original series, yt - mt, we find some evidences of overdifferencing, i.e., the estimated

value of d is less than zero. This might suggest that estimated breaks in I(d) may be

spurious.

We could further investigate if the estimated number of breaks has something to

do with the underlying DGP. Since the Schwarz-Bayesian criterion (SBC) can be
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considered as an alternative for which might be inferred from visual inspection of a time

series, we can show that spuriously4 many breaks (but with different numbers depending

on value of d) will be inferred when the process is I(1)5 or I(d) without breaks in the

parameters of the DGP.

Consider the following simple model of R structural breaks:

ttty ε+µ= , εt ∼  iidN(0,σε
2),

and µt = µi, for ki-1 < t ≤ ki, where i = 1,...,R+1, k0 = 0, kR+1 = T and 0 < k1 < ... < kR < T.

Then the maximum likelihood estimator of σ2 is

(17) ( )
2

1

1 111

2

0

2

1
1

111minˆ ∑ ∑∑
+

= +=−=<<<< 





−

−=σ
−

R

r

k

kt
t

rr

T

t
tTkkT

r

r
R

y
kkT

y
T

R
L

Using SBC, the estimated number of break points R is found by

(18) ( ) ( )( ) ( )
T

TRRRSBCR T
R

log21ˆlogminargˆ 2 ++σ==

subject to R < RU, with RU a given fixed upper bound for R. Since the second term in (18)

goes to 0 as T increases, for any fixed R, only the first term in (18) matters

asymptotically. For the given large T, we would have different value of SBC with

different number of R because of the second term in (17).

In this section, we focus on following data generating processes without break,

where εt is white noise:

(I) tty ε= ,

(II) ( ) tt
d yB ε=−1  with 0 < d < 1/2,

                                               
4 They might be interpreted as real breaks in a finite sample approximation.
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(III) ( ) tt
d yB ε=−1  with 1/2 < d < 1, and

(IV) ( ) ttyB ε=−1 .

The following asymptotic facts will be useful to obtain the results of Proposition 2:

 (II′) ( )1][
2/1

pTr
d OST =−− , with 0 < d < 1/2,

(III′) ( )1][
2/1

pTr
d OST =−− , with 1/2 < d < 1, and

Proposition 2: Assume yt follows four different DGP of  (I), (II), (III) and (IV) with no

break, then the estimated numbers, R̂ , of breaks by the SBC method as T →  ∞  are

(a) R̂  →  0, with d = 0,

(b) ∞→R̂ , with 0 < d < 1/2

(c) ∞→R̂ , with 1/2 < d < 1

(d) ∞→R̂ , with d = 1.

Proof: The proofs of part (a) and (d) are in Yao (1988) and Bai (1998). The proof of part

(b) is as follows: Define

( )

















 ε

−
+





 ε= ∑∑

+==

−−
2

1

2

1

21* 11 T

kt
t

k

t
t

d
T kTk

TkM

For an arbitrary projection matrix P, we have zzPzz ′≤′ . Then ( ) ( ) ( )1sup *
1,0 pOM =∈ λλ

from Theorem 1 of Bai (1998), since ( ) ( )1
1

21
1

221*
p

k

t t
k

t t
d

T OTTkM =ε≤ε≤ ∑∑ =
−

=
−−  for 0 <

d < 1/2. By applying Theorem 2 of Bai (1998), we have

( ) ( ) ( )λ<= *** 10 MMM , for every 0 < λ < 1 with probability 1,

                                                                                                                                           
5 Nunes, Kuan and Newbold (1995) showed that the SBC failed to estimate the true number of breaks, but
estimated the maximum permitted number of breaks when the DGP was a random walk.



16

since 
[ ] ( )rGTST
Tr

t t
d

Tr
d ⇒ε= ∑ =

−−−−
1

2/1
][

2/1  where G(⋅) has a continuous distribution for

each r. The proof of part (c) is obvious since

( ) ( )1
1

22
1

221*
p

k

t t
dk

t t
d

T OTTkM =ε≤ε≤ ∑∑ =
−

=
−−  for 1/2 < d < 1. Q.E.D.

In table 5, we present simulation results of proposition 2 in a small sample. Six

different DGPs are considered and show a positive relation between the number of breaks

and the value of d in a finite sample. When the DGP is an I(d) or a random walk, the SBC

selects the maximum permitted number of breaks on the majority of occasions as d close

to 1. Clearly the I(d) process is an intermediate process between I(0) and I(1) in terms of

the estimated number of breaks in finite sample.

6. Occasional Break in the Stock Market and Long Memory

In this section we investigate the “long memory” property in the stock market. As

a preliminary analysis, we plot stock returns, absolute returns and the 220 days moving

average of absolute returns from January 4, 1928 to August 30, 1991 with 17054 daily

observations in Figure 5. By the GPH, d̂  is 0.475 with t-value = 8.22. However, it can be

seen from Figure 5-3 that large absolute returns are more likely to be followed by large

absolute return than small returns. For example, the October 1987 crash (16,076-th

observation) significantly increased volatility for a while.

It is possible to suggest two conjectures. The first one is that the absolute returns

follow a linear process with occasional breaks (If Tp is a constant positive integer as T

increases to infinite, this process is still not explosive. That means the variance of this

series is bounded). The second one is that the breaks may not be determined by the size
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of shock as suggested by the specification of Engle and Smith (1999). Sometimes a big

shock could be a transitory, not permanent effect on the volatility of returns in Figure 5-2.

There would be several competing theories to explain the long memory

properties, and also time-varying d in the stock market volatility. We suggest that this

series would be well characterized by a linear model with occasional breaks. An I(d)

process could be a possible alternative but it has its own drawbacks, for example,

Proposition 3: Let εt > 0, yt > 0 for all t, and ( ) tt
d yB ε=−1 , then yt is a process with

upward trend component.

Proof: Even for d < ½, ∑ ∞
= −ε=

0j jtjt dy  such that ∞<∑ ∞
=0

2
j jd  but + ∞→∑ ∞

=0
||

j jd .

Since εt > 0 for all t, + ∞→ε= ∑ = −
t

j jtjt dy  as t →  ∞ . Q.E.D.

That is, if we characterize stock return volatility by an I(d) process, it implies explosive

volatility. It might be a good approximation in finite sample, but can not be a true DGP of

stock return volatility.

Lobato and Savin (1998) point out that the evidence in favor of long memory in

stock return might be due to structural breaks, and they investigate if the observed

evidence of long memory is, in fact, due to nonstationarity during long period. They split

their sample (1962-1994) into two periods, taking January 1973 as the break point. But

they do not find any evidence that long memory was caused by the structural break of

1973. A different, but related work by Aggarwal, Inclan and Leal (1999) indicates how to

investigate the effect of breaks on the long memory property. An iterated cumulative

sums of squares (ICSS) algorithm is used to identify the points of breaks in the variance

of returns in the stock market and how long the shift lasts. Dummy variables are then
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introduced into the variance equation of a GARCH model to account for the sudden

changes in variance, to yield a combined model with GARCH and dummy variables.

Instead of Lobato and Savin’s approach (using pre-determined break), we estimate

unknown structural breaks in the stock market by adapting the method of Aggarwal,

Inclan and Leal, and check whether these breaks contain long memory component. In our

analysis, the structural breaks in volatility detected by either Bai’s method or the ICSS

algorithm can be used directly to decompose stock returns into a break component and

residuals. We found clear evidence of a positive relation between the time-varying

property of d and the number of breaks (see Tables 6 - 8).

For the analysis of variance, we introduce a simple version of occasional breaks in

variance. Let {yt} be independent observations from a normal distribution with zero mean

and variance σt
2. When the total number of variance changes in T observations is R, and 1

< k1 < k2 <⋅⋅⋅< kR < T are the set of change points, the variance between two consecutive

break points is denoted by τj
2, j = 0,1,...,R. One could use the following GARCH process

as a general case of a process with breaks in variance6:

(19) ttty νσ= , νt ~ iid(0,1), ( )1
22 | −= ttt IyEσ

(20) 2
1

2
1

2
−− α+βσ+ω=σ tttt y

(21) tttt q η+ω=ω − 1 ,  ηt ~ iid(0, ση
2)

where νt and ηs are independent for all t and s. In the GARCH equation (20), the

parameters α, β are nonnegative and ωt are positive for all t. It might be better to use

                                               
6 Recently Mikosch and Starica (1999) show long range dependence of financial time series by using shifts
in the variance.
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EGARCH instead of GARCH because no restriction on α, β and ωt are necessary. Let α

= β = 0, for the simplest case, i.e., this is a process with occasional breaks in variance.

After identifying unknown structural breaks, we could obtain a break process and a

series, yt
*, without any break component. If we estimate break points in level, we could

get yt
*, by dummy variables regression:

(22) ( )11110
*

+++++−= RRtt DaDaayy L

where 


 ∈

=
otherwise

iregimetif
Di 0

1
, for i = 1,...,R+1.

Although there is a similarity between a model for breaks in mean and in

variance, the method of removing the break component in (19) - (21) is completely

different from (22). Instead divide series yt by τi = ωt, for each different regime i as

below:

(23) itt yy τ=* , if yt belongs to regime i = 1,...,R+1.

For 10 sub-periods of S&P 500 daily return, Tables 6 - 8 provide the estimated d

with t-statistics, number of breaks, and LM statistics with p-value. The 1st panel of Table

6 presents the estimated values of d by GPH in the absolute returns and LM statistics.

d̂ ’s are changing from 0.352 in period 1 to 0.154 in period 5 and upto 0.715 in period 8.

All of the sub-periods have strong evidence of long memory in the absolute stock return.

The estimated number of breaks in the level of absolute returns by Bai's method (in the

2nd panel) obviously has positive relation with d̂ . For example, period 8 has 17 breaks

and has the highest value of d = 0.715 amongst all sub-periods. But they do not show an

exact relation since d is affected by the magnitude of the break too. We assume the
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maximum number of breaks is 50 in the first step, and restrict not to estimate a break if

the size of the sample is less than 50 observations7. The 4th panel shows the results of

fitting structural breaks that correspond to the points of level shifts in the absolute

returns. Although all of the sub-periods have strong evidence of long memory in the

absolute returns, none of its residuals, {yt
*}8, has long memory.

However, Bai's procedure might be problematic when applied to this data since it is

based on the assumption of no breaks in variance. It is a well known fact that absolute

stock returns have an exponential distribution, which implies mean and variance are

determined by one parameter. To avoid this problem, we use the ICSS method to identify

breaks in variances of stock returns by using the model (19) - (21). Table 7 reports the

number of sudden changes in variance as identified by the ICSS algorithm for stock

returns. Periods 3 and 7 have 17 break points and period 9 has only 4 change points and

so on. Figures 6-1 - 6-10 present plots of absolute stock returns for each sub-period. The

solid line shows the sudden changes detected by plotting sample means of absolute

returns, where the sample means calculated for the observation between the change

points. The significant changes in variance are a little bit more than those in level of

absolute returns. The 3rd panel of Table 7 shows the results of fitting breaks that

correspond to the points of breaks in variance to the level of absolute stock returns. When

breaks in variance are introduced, the evidence is somewhat mixed. In some sub-series,

                                               
7 As we increase the maximum permitted number of breaks or decrease the minimum number of
observations to detect a break within that sample, we get a little bit more breaks.
8 In Table 6, we use (23) instead of (22) to get break 'free' series since the absolute stock returns show some
co-break in mean and variance. Because we estimate breaks by Bai's method, (22) is suitable one.
However, the application of (22) to the absolute returns shows similar long memory property as Table 6,
since spurious long memory depends on changes in mean.
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negative estimates of d in the residuals are obtained, so there is some possibility of

overdifference as pointed out in section 5.

As an additional analysis, we also examined long memory in the squared stock

returns in Table 8. As occasional breaks are incorporated directly into return series, the

existence of long memory in volatility is mixed, too.

In the empirical analysis the evidence is somewhat mixed as to whether volatility

has I(d) process or structural breaks. However, structural changes in the absolute stock

return or squared returns are evident and result in spurious “long memory” of these series

in a certain degree. Either model by itself may not capture all of the persistence in the

volatility, i.e., there may be residual I(d) effects when a model is fitted that includes only

structural breaks, and there may still be sudden changes in the volatility of residuals after

fitting an I(d) model. Therefore, a more complete analysis would allow for both kinds of

effects.

7. Extension: Common Occasional Breaks Process in Multivariate Series

Ray and Tsay (1997) find that common long-range dependent components occur as

frequently in a randomly chosen group of S&P 500 companies as in companies of similar

market capitalization, but that common long-range dependent components are more

likely for companies in the same business sector. These results suggest that there might

exist common breaks in stock markets since stock market volatility can be characterized

by a linear model with occasional breaks instead of an I(d) process. One could have

alternative explanations of common long-range dependence by applying the common

break concept which might capture any common long memory component of these
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multivariate series. Structural breaks may be related across variables, in an analogous

way to common long-range dependence or cointegration.

The following is a model for multivariate series with a common break process in

mean. This model could easily be altered for common breaks in variance. If there are N

individual series which have one common break component,

(21) ititit my ε+= , i = 1,...,N, t = 1,… ,T.

(22) ∑ =− η+=η+= t

s issiittitit qmqmm
101

The process, mit, will capture coincident breaks among several series. Individual series

might have different levels of mean within each regime. The break component ‘free’

series here is ititit myy −=* , where mit is the mean of each regime of individual i. This y*

is a series without any break components, where all of the series have the same structure

of breaks, qt, but allowing different size of shocks to each series by the amount, ηit.

8. Conclusions

It has been shown that a series with breaks can mimic some of the properties of

I(d) processes, particularly the autocorrelations, where d can be a fraction, its value

depending on the number of breaks for a particular sample size. From simulation results

it is also shown that absolute returns for the S&P 500 stock index are more likely to show

the "long memory" property because of the presence of breaks in the series rather than

being an I(d) process. This has relevance for the forecastability of absolute returns, which

are potentially useful for value at risk estimates, especially if the timing and the size of

breaks can be shown to be forecastable. This is potentially possible if the breaks are

endogenous and needs to be explored further.
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Table 1. Theoretical Values of Autocorrelation

p,  [Tp] 0.0025,   [5] 0.005,   [10] 0.01,     [20] 0.05,     [100]
ση

2 = 0.1 0.077    0.043
0.070    0.004
0.352    (3.22)

0.143    0.080
0.126    0.008
0.464    (4.23)

0.250    0.141
0.217    0.015
0.587    (5.47)

0.624    0.352
0.543    0.025
0.825   (8.09)

ση
2 = 0.5 0.294    0.165

0.236    0.013
0.585    (5.43)

0.454    0.256
0.369    0.018
0.707    (6.71)

0.624    0.352
0.528    0.024
0.815    (8.02)

0.892    0.502
0.832    0.024
0.951    (9.75)

ση
2 = 1 0.454    0.256

0.352    0.017
0.683    (6.46)

0.624    0.352
0.510    0.020
0.795    (7.78)

0.768    0.433
0.670    0.023
0.884    (8.90)

0.942    0.531
0.903    0.022
0.975  (10.11)

ση
2 = 5 0.806    0.454

0.654    0.021
0.858    (8.59)

0.892    0.502
0.799    0.018
0.929    (9.60)

0.942    0.531
0.894    0.017
0.970   (10.16)

0.987    0.556
0.975    0.020
0.997   (10.48)

Note: The number of series is T=2,000 and σε
2 = 1. [Tp] means the number of structural

breaks within sample, and ση
2 related the size of breaks. The first numbers are theoretical

values of the autocorrelation at k = 1 and 500, by using (8). The numbers in the second
rows are average values of the autocorrelations at k=1 and 500, which are simulated from
1,000 replications with 2,000 sample size. The numbers in the third rows are the
estimated d by the GPH method and t-values in the parenthesis.
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Table 2. Estimated d for 20 Sub-periods

Period
        Case I
      d        t-stat

         Case II
       d        t-stat

        Case III
       d        t-stat

         Case IV
       d        t-stat

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

   0.405    2.754
   0.031    0.151
   0.079    0.634
   0.155    1.456
  -0.105   -0.884
  -0.167   -1.197
  -0.087   -0.891
  -0.145   -1.496
  -0.067   -0.532
  -0.003   -0.020
   0.142    1.563
   0.003    0.034
   0.252    1.842
  -0.058   -0.548
   0.262    2.128
  -0.063   -0.592
   0.083    0.632
  -0.239   -1.975
   0.123    1.127
   0.068    0.554

   0.337    1.923
   0.204    1.117
   0.493    4.946
   0.461    2.729
   0.313    2.109
   0.347    2.446
   0.238    2.317
   0.292    3.019
   0.226    1.883
   0.419    2.850
   0.517    5.346
   0.362    3.289
   0.723    5.744
   0.309    3.341
   0.445    3.971
   0.386    2.653
   0.284    2.428
   0.269    2.515
   0.288    2.147
   0.711    3.947

   0.840    5.121
   0.274    1.649
   0.079    0.634
   0.155    1.456
  -0.105   -0.884
  -0.166   -1.439
  -0.148   -1.437
  -0.115   -1.142
  -0.067   -0.532
   0.210    1.267
   0.142    1.563
   0.003    0.034
   0.252    1.842
  -0.058   -0.548
   0.374    2.067
  -0.063   -0.592
   0.083    0.632
  -0.239   -1.975
   0.336    2.843
   0.068    0.554

   0.668    5.831
   0.595    3.836
   0.798    8.035
   0.802    4.247
   0.923    5.095
   0.710    6.945
   0.568    4.441
   0.708    5.250
   0.638    4.811
   0.918    6.434
   0.927    8.025
   0.765    4.564
   1.005  10.343
   0.722    3.602
   0.868    6.767
   0.802    4.800
   0.621    6.322
   0.728    5.492
   0.849    4.833
   0.978    7.317

Note: The number of total sample is 20,000 and the size of each sub-sample is 1,000. d is
estimated by the GPH method and g(T) = 32 ≈ 1,0000.5. (Tp, ση

2) for Case I = (20, 0.1),
Case II = (200, 0.1), Case III = (20, 0.5), and Case IV = (200, 0.5) where Tp means the
expected number of structural breaks within sample
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Table 3. Rejection Rates of the Null of Stationarity against I(d) Process

     p   (Tp) 0.025 (5) 0.05 (10) 0.1 (20)
ση

2 =0.001 6.6
1.0

6.4
1.6

8.5
1.9

0.005 7.2
1.7

9.9
3.3

12.9
7.2

0.01 10.4
2.5

12.7
7.0

20.0
14.0

0.05 23.6
17.7

36.5
33.6

55.0
52.8

0.1 33.6
30.9

52.6
54.4

72.7
70.6

0.5 69.2
68.9

86.1
85.9

93.1
93.9

1 81.6
80.2

91.1
90.0

95.7
94.8

Note: The first numbers equals the % of t-value > 1.645 in the GPH. The number in the
second rows is the % of p-value of the LM test which is less than 0.05. The results are
based on 1,000 replications with 200 sample size.
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Table 4. Estimated d for Decomposed I(d) Process into Break Process and Residual

DGP
of I(d)

Number of
 Breaks

yt  :  d
(t-value)

mt  :  d
(t-value)

yt - mt  :  d
(t-value)

 d = 0.2 8.19 0.202
(1.90)

0.630
(6.05)

-0.168
(-1.53)

d = 0.4 19.76 0.409
(3.82)

0.657
(6.04)

-0.453
(-4.07)

d= 0.6 28.36 0.618
(5.78)

0.797
(7.43)

-0.623
(-5.64)

d=0.8 34.77 0.827
(7.84)

0.953
(9.04)

-0.708
(-6.41)

Note: Numbers of breaks are estimated by Bai’s method. d is estimated by the GPH
method. Results are based on 1,000 replications with 2,000 sample.
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Table 5. Number of Breaks Selected by the SBC

RU R I(0) d=.2 d=.4 d=.6 d=.8 I(1)
1 0 92.3 62.6 30.7 12.3   5.8   1.4

1   7.7 37.4 69.3 87.7 94.2 98.6

2 0 90.9 54.9 19.9   5.5   2.0   0.3
1   7.3 28.4 37.1 25.5 13.4   4.5
2   1.8 16.7 43.0 69.0 84.6 95.2

3 0 90.9 54.2 19.1   4.7   1.5   0.3
1   7.3 27.2 31.7 17.6   6.4   1.3
2   1.8 14.4 30.3 32.0 24.8 12.2
3   0.0   4.2 18.9 45.7 67.3 86.2

4 0 90.9 54.2 19.1   4.7   1.5   0.2
1   7.3 27.2 31.3 16.7   5.5   1.3
2   1.8 14.1 28.2 28.1 18.5   8.5
3   0.0   4.2 15.2 30.5 29.2 24.7
4   0.0   0.3   6.2 20.0 45.3 65.3

Note: Results based on 1,000 replications with 50 observations, We consider 6 different
DGP's, i.e., white noise, I(d) and random walk without breaks.
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Table 6. Estimated d and LM statistics of the Absolute Stock Returns, Break
Process and Residuals

Abs. return (|yt|) Break Process (mt) Residual (|yt| / mt)
time   d

 (t-stat)
LM

(p-val)
Break   d

(t-stat)
LM

(p-val)
  d

(t-stat)
LM

(p-val)
1 1928-1934 0.352

(2.72)
49.35
(0.00)

10 0.520
(3.75)

88.61
(0.00)

0.034
(0.34)

0.163
(0.69)

2 1934-1940 0.405
(3.10)

52.08
(0.00)

9 0.583
(6.00)

85.01
(0.00)

0.104
(0.84)

1.001
(0.31)

3 1941-1947 0.438
(4.51)

18.34
(0.00)

5 0.519
(5.36)

31.10
(0.00)

0.082
(0.65)

1.308
(0.25)

4 1947-1953 0.347
(2.31)

14.97
(0.00)

8 0.492
(5.81)

40.06
(0.00)

0.137
(1.12)

0.827
(0.36)

5 1954-1960 0.154
(1.49)

15.44
(0.00)

9 0.567
(5.71)

82.80
(0.00)

0.091
(0.77)

0.859
(0.35)

6 1960-1966 0.451
(4.11)

14.87
(0.00)

5 0.686
(7.90)

41.23
(0.00)

0.082
(0.70)

0.737
(0.39)

7 1967-1973 0.517
(5.96)

38.38
(0.00)

11 0.681
(5.99)

57.29
(0.00)

0.151
(1.06)

0.039
(0.84)

8 1973-1979 0.715
(6.80)

129.67
(0.00)

17 0.746
(6.74)

131.52
(0.00)

0.109
(1.16)

0.517
(0.47)

9 1980-1986 0.418
(3.80)

34.63
(0.00)

17 0.499
(4.64)

42.88
(0.00)

0.231
(1.60)

0.002
(0.97)

10 1986-1991 0.352
(5.00)

20.73
(0.00)

9 0.350
(7.99)

26.66
(0.00)

0.117
(1.07)

0.640
(0.42)

Note: 1705 daily absolute stock returns, |yt|, for each subperiod. After identifying breaks
in mean of the absolute returns by Bai’s method, decompose the absolute stock returns
into break component (mt) and break-free component (|yt|/mt). mt is a sample mean of
each regime.
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Table 7. Estimate Breaks in Variance by the ICSS, and Apply to the Absolute Stock
Returns

        Break Process (mt)            Residual (|yt| / mt)
    time Breaks  d    (t-stat) LM   (p-val)   d    (t-stat) LM   (p-val)

1 1928-1934 9 .669  (9.58) 129.57  (0.00) -.041  (-0.31) 0.693  (0.41)
2 1934-1940 7 .691  (7.16) 105.36  (0.00) -.102  (-0.80)  1.149  (0.28)
3 1941-1947 17 .458  (4.61) 17.70  (0.00) -.363  (-2.59) 0.580  (0.45)
4 1947-1953 14 .397  (4.48) 27.31  (0.00) -.304  (-2.87) 3.253  (0.07)
5 1954-1960 8 .608  (6.77) 83.40  (0.00) -.132  (-1.16) 0.964  (0.35)
6 1960-1966 11 .431  (4.67) 21.99  (0.00)   .084  (1.09) 0.052  (0.82)
7 1967-1973 17 .567  (6.58) 40.52  (0.00) -.519  (-4.89) 3.782  (0.05)
8 1973-1979 9 .704  (5.22) 158.85  (0.00) -.204  (-1.99) 0.196  (0.66)
9 1980-1986 4 .986 (11.06) 120.24  (0.00)  .125   (1.11) 1.628  (0.20)

10 1986-1991 8 .278  (6.375) 18.33  (0.00)  .080   (0.89) 0.697  (0.40)
Note: Estimate breaks in variance of stock returns by the ICSS algorithm for 10 sub-
samples with 1,705 observations. Not estimate break if the size of observation is less than
50 observations. After identifying break points, decompose the absolute stock returns into
break component (mt) and break-free component (|yt|/mt). mt is a sample mean of |yt| of
each regime. |yt| is the absolute stock returns.
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Table 8. Estimate Breaks in Variance by the ICSS, and Estimate d and LM statistics
of the Squared Stock Return, Break Process and Squared Residuals

Squ. Return ( yt
2) Break Process (mt) Residual (yt / mt)2

time   d
 (t-stat)

LM
(p-val)

Break   d
(t-stat)

LM
(p-val)

  d
(t-stat)

LM
(p-val)

1 1928-1934 0.218
(1.85)

15.14
(.000)

9 0.668
(9.09)

133.93
(0.00)

-0.077
(-0.64)

0.709
(0.40)

2 1934-1940 0.457
(4.68)

35.85
(.000)

7 0.707
(8.03)

105.39
(0.00)

-0.110
(-0.73)

0.890
(0.35)

3 1941-1947 0.445
(2.37)

8.23
(.004)

17 0.483
(4.15)

19.48
(0.00)

-0.449
(-3.78)

1.962
(0.16)

4 1947-1953 0.200
(2.04)

7.69
(.006)

14 0.441
(5.02)

31.89
(0.00)

-0.295
(-2.87)

3.672
(0.06)

5 1954-1960 0.106
(0.87)

5.61
(.018)

8 0.564
(6.75)

62.41
(0.00)

-0.145
(-1.16)

0.658
(0.42)

6 1960-1966 0.286
(3.37)

5.63
(.018)

11 0.351
(3.21)

17.90
(0.00)

  0.112
(1.15)

0.046
(0.83)

7 1967-1973 0.485
(4.95)

23.33
(.000)

17 0.619
(7.34)

47.85
(0.00)

-0.463
(-3.76)

4.734
(0.03)

8 1973-1979 0.925
(6.67)

108.75
(.000)

9 0.834
(7.82)

158.83
(0.00)

-0.334
(-2.77)

0.401
(0.53)

9 1980-1986 0.341
(3.17)

22.51
(.000)

4 0.985
(10.53)

115.74
(0.00)

-0.138
(-1.01)

0.271
(0.60)

10 1986-1991 0.101
(5.77)

1.29
(.256)

8 0.283
(6.77)

20.03
(0.00)

-0.013
(-0.13)

0.024
(0.88)

Note: Estimate breaks in variance of the stock returns, yt, by the ICSS algorithm for 10
sub-samples with sample size 1,705. After identifying break points, decompose the stock
returns into break component (mt) and break-free component (yt/mt). mt is a sample
standard deviation of each regime. The GPH and LM are applied to the squared returns
and squared residuals.
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