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Abstract

The theoretical and empirical econometric literatures on long memory and regime
switching have evolved largely independently, as the phenomena appear distinct. We
argue, in contrast, that they are intimately related, and we substantiate our claim in
several environments, including a simple mixture model, Engle and Smith’s (Rev.
Econom. Statist. 81 (1999) 553–574) stochastic permanent break model, and Hamil-
ton’s (Econometrica 57 (1989) 357–384) Markov-switching model. In particular, we
show analytically that stochastic regime switching is easily confused with long mem-
ory, even asymptotically, so long as only a “small” amount of regime switching
occurs, in a sense that we make precise. A Monte Carlo analysis supports the rele-
vance of the theory and produces additional insights. ? 2001 Elsevier Science S.A.
All rights reserved.
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1. Introduction

Motivated by early empirical work in macroeconomics (e.g., Diebold and
Rudebusch, 1989) and later empirical work in @nance (e.g., Ding et al., 1993),
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recent years have witnessed a renaissance in both the theoretical and empirical
econometrics of long memory and fractional integration. Recent contributions
include, among many others, Ding et al. (1993), Robinson (1995), Comte
and Renault (1998), and Andersen et al. (2001a, b).
The fractional unit root boom of the 1990s was preceded by the integer unit

root boom of the 1980s. In that literature, the classic work of Perron (1989)
made clear the ease with which stationary deviations from broken trend can be
misinterpreted as I(1) with drift. More generally, it is now widely appreciated
that structural change and unit roots are easily confused, as emphasized for
example by Stock (1994), who summarizes the huge subsequent literatures
on unit roots and on structural change, and the interrelationships between the
two.
The recent more general long-memory literature, in contrast, pays little

attention to the possibility of confusing long memory and structural change.
It is striking, for example, that the otherwise masterful surveys by Robinson
(1994a), Beran (1994), and Baillie (1996) do not so much as mention the
issue. The possibility of confusing long memory and structural change has of
course arisen occasionally, in literatures ranging from mathematical statistics
(Bhattacharya et al., 1983; KGunsch, 1986; Teverovsky and Taqqu, 1997) to
applied hydrology (KlemeHs, 1974), but the warnings have had little impact. 1

We can only speculate as to the reasons, but they are probably linked to the
facts that, on the one hand, theoretical work such as Bhattacharya et al. (1983)
is highly abstract and appears lacking in motivation and intuition, while on
the other hand, simulation examples such as KlemeHs (1974), although well
motivated and intuitive, oIer neither theoretical justi@cation nor Monte Carlo
evidence.
In this paper we work with simple and intuitive econometric models, and

we provide both theoretical justi@cation and Monte Carlo evidence to sup-
port the claim that long memory and structural change are easily confused.
In Section 2, we set the stage by considering alternative de@nitions of long
memory and the relationships among them. In addition, we review the mech-
anisms for generating long memory that have been stressed previously in the
literature, which are very diIerent from those that we develop and therefore
provide interesting contrast. In Section 3, we work with several simple mod-
els of structural change, or more precisely, stochastic regime switching, and
we show when and why they produce realizations that appear to have long
memory. In Section 4 we present a Monte Carlo analysis, which veri@es the
predictions of the theory and produces additional insights. We conclude in
Section 5.

1 Econometrics literature touching on the possibility of confusing long memory and structural
change includes Hidalgo and Robinson (1996) and Lobato and Savin (1997).



F.X. Diebold, A. Inoue / Journal of Econometrics 105 (2001) 131–159 133

2. Long memory: De�nitions and origins

Here we brieKy consider alternative de@nitions of long memory and the
relationships among them, as well as “explanations” of the origin of long
memory that have been stressed in the literature. Reviewing various de@ni-
tions of long memory sets the stage for our subsequent analysis, which is
heavily inKuenced by one of the de@nitions. Reviewing standard explanations
of long memory, which are very diIerent from ours, again sets the stage
for our subsequent approach and provides useful contrast. Throughout this
section and this paper, in keeping with the motivation above, our interest in
long memory centers not on unit-root processes, but rather on mean-reverting
fractionally integrated processes (I(d); 0¡d¡ 1), and when used without
quali@cation “long memory” should be taken to mean I(d); 0¡d¡ 1.

2.1. De-nitions

Traditionally, long memory has been de@ned in the time domain in terms of
decay rates of long-lag autocorrelations, or in the frequency domain in terms
of rates of explosion of low-frequency spectra. A long-lag autocorrelation
de@nition of long memory for a covariance stationary process x is

�x(�)= c�2d−1 as �→∞
and a low-frequency spectral de@nition of long memory is

fx(!)= g!−2d as !→ 0+:

An even more general low-frequency spectral de@nition of long memory is
simply

fx(!)=∞ as !→ 0+;

as in Heyde and Yang (1997). The long-lag autocorrelation and low-frequency
spectral de@nitions of long memory are well known to be equivalent under
conditions given, for example, in Beran (1994).
A third de@nition of long memory involves the rate of growth of variances

of partial sums

var(ST )=O(T 2d+1);

where ST =
∑T

t=1 xt . There is a tight connection between this variance-of-
partial-sum de@nition of long memory and the spectral and autocorrelation
de@nitions of long memory. In particular, because the spectral density at
frequency zero is the limit of (1=T )ST , a covariance stationary process has
long memory in the generalized spectral sense of Heyde and Yang if and only
if it has long memory for some d¿ 0 in the variance-of-partial-sum sense
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(see also BarndorI-Nielsen and Cox, 1989, p. 13). Our subsequent analysis is
heavily inKuenced by the variance-of-partial-sum de@nition of long memory.

2.2. Origins

There is a natural desire to understand the appearance of long memory.
Most econometric attention has focused on the role of aggregation. 2 Here we
brieKy review the two central aggregation-based routes to long memory, in
order to contrast them to our subsequent perspective, which is very diIerent.
First, following Granger (1980), consider the aggregation of i=1; : : : ; N

cross-sectional AR(1) units

xit = �ixi; t−1 + �it ;

where �it is the white noise, �it⊥�jt , and �i⊥�jt for all i; j; t. As N → ∞, the
spectrum of the aggregate xt =

∑N
i=1 xit can be approximated as

fx(!) ≈ N
2�

E(var(�it))
∫

1
|1− �ei!|2 dF(�);

where F is the c.d.f. governing the �’s. If F is a beta distribution, i.e., if

dF(�)=
2

B(p; q)
�2p−1(1− �2)q−1 d�; 06 �6 1;

then the �th autocovariance of xt is

�x(�)=
2

B(p; q)

∫ 1

0
�2p+�−1(1− �2)q−2 d�=A�1−q:

Thus xt ∼ I(1− q=2).
Granger’s (1980) elegant bridge from cross-sectional aggregation to long-

memory dynamics has since been generalized by a number of authors. For
example, Chambers (1998) considers temporal aggregation in addition to
cross-sectional aggregation, in both discrete and continuous time, and Lippi
and ZaIaroni (1999) replace Granger’s assumed beta distribution with weaker
semiparametric assumptions.
An alternative route to long memory, which also involves aggregation, has

been studied by Mandelbrot and his coauthors (e.g., Cioczek-Georges and
Mandelbrot, 1995) and Taqqu and his coauthors (e.g., Taqqu et al., 1997). It
has found wide application in the modeling of aggregate traQc on computer
networks, although the basic idea is widely applicable. De@ne the stationary
continuous-time binary series W (t); t¿ 0 so that W (t)=1 during “on” peri-
ods and W (t)=0 during “oI” periods. The lengths of the on and oI periods

2 Although aggregation is by far the most heavily studied route to long memory, it is not
the only one to have appeared in the literature. In particular, Chen et al. (1999) have recently
constructed a class of nonlinear Markov processes that can display long memory.
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are iid at all leads and lags, and on and oI periods alternate. Consider M
such series, W (m)(t); t¿ 0; m=1; : : : ; M , and de@ne their aggregate in the
interval [0; Tt] by

W ∗
M (Tt)=

∫ Tt

0

(
M∑
m=1

W (m)(u)

)
du:

Let F1(x) and F2(x) denote the cumulative density functions of durations
during on and oI periods, and assume that they have power-law tails,

1− F1(x)∼ c1x−�1L1(x); 1¡�1¡ 2;

1− F2(x)∼ c2x−�2L2(x); 1¡�2¡ 2;

which imply in@nite variance. Now let M → ∞ and then let T → ∞. Then
W ∗
M (Tt), appropriately standardized, converges to a fractional Brownian mo-

tion. 3

Parke (1999) considers a closely related discrete-time error duration model,
yt =

∑t
s=−∞ gs; t�s, where �t ∼ iid(0; %2); gs; t =1(t6 s+ns), and ns is a stochas-

tic duration. EIectively Parke, as with Mandelbrot and Taqqu, is concerned
with an output equal to the sum of all current and past shocks that are still
“alive”, and in Parke’s model, again as in the Mandelbrot–Taqqu model, long
memory arises when the lifetime duration (ns in Parke’s setup) has in@nite
variance. The Mandelbrot–Taqqu–Parke approach beautifully illustrates the
intimate connection between long memory and heavy tails. 4

Both the Granger and the Mandelbrot–Taqqu–Parke approaches generate
rich long-memory dynamics from aggregation of much simpler processes.
Yet the aggregation approach is not fully satisfying. On the theoretical side,
it works from assumptions that are both rigid and diQcult to verify, and on
the empirical side, we know of no evidence that long memory tends to be
relatively more prevalent in aggregated as opposed to disaggregated series.
With this in mind, we now explore a very diIerent and complementary route
to long memory: structural change.

3. Long memory and structural change

Structural change is likely widespread in economic relationships; see Stock
and Watson (1996) for a recent and persuasive empirical analysis. There are
of course huge econometric literatures on testing for structural change, and

3 For general background on fractional Brownian motion and in@nite variance, see Samorod-
nitsky and Taqqu (1994). For background on the link between in@nite variance and power law
tails, see Embrechts et al. (1997).

4 Liu (1995) also establishes a link between long memory and in@nite variance.
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on estimating models of structural change and stochastic regime switching.
In what follows, we focus on simple models of stochastic regime switching.

3.1. A mixture model

We will show that a standard mixture model with appropriately time-varying
mixture weight (“break probability”) will display var(ST ) behavior that matches
that of an I(d) process. Speci@cally, let

vt =
{
0 w:p: 1− p;
wt w:p: p;

where wt
iid∼N(0; %2w). Note that var(

∑T
t=1 vt)=pT%

2
w=O(T ). If, however, in-

stead of requiring constant p we allow it to change appropriately with sample
size, then we can immediately obtain a partial sum variance that grows con-
sistent with long memory.

Proposition 1. If p=O(T 2d−2); 0¡d¡ 1; then var(ST )=O(T 2(d−1)+1).

Proof. var(
∑T

t=1 vt)=O(T
2d−2)T%2w=O(T

2d−1)=O(T 2(d−1)+1).

It is straightforward to move to a richer model for the mean of a series:

)t =)t−1 + vt ;

vt =
{
0 w:p: 1− p;
wt w:p: p;

where wt
iid∼N(0; %2w). Note that var(

∑T
t=1 vt)=pT%

2
w=O(T ). As before, let

p=O(T 2d−2); 0¡d¡ 1, so that the variance of partial sums of vt grows at
the rate corresponding to I(d−1) behavior, which implies that the variance of
partial sums of )t =

∑T
t=1 vt grows at the rate corresponding to I(d) behavior.

It is also straightforward to move to an even richer “mean-plus-noise
model” in state space form:

yt =)t + �t ;

)t =)t−1 + vt ;

vt =
{
0 w:p: 1− p;
wt w:p: p;

where wt
iid∼N(0; %2w) and �t

iid∼N(0; %2� ), which will display the same behavior
of variances of partial sums when p=O(T 2d−2); 0¡d¡ 1.
Many additional generalizations could of course be entertained. The Balke

and Fomby (1989) model of infrequent permanent shocks, for example, is
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a straightforward extension of the simple mixture model described above.
Whatever the model, the key idea is to let p decrease with the sample size,
so that regardless of the sample size, realizations tend to have just a few
breaks.

3.2. The stochastic permanent break model

Engle and Smith (1999) propose the “stochastic permanent break” (STOP-
BREAK) model

yt =)t + �t ;

)t =)t−1 + qt−1�t−1;

where qt = q(|�t |) is nondecreasing in |�t | and bounded by zero and one, so
that bigger innovations have more permanent eIects, and �t

iid∼N(0; %2� ). They
use qt = �2t =(�+ �

2
t ) for �¿ 0.

Quite interestingly for our purposes, Engle and Smith show that their model
is an approximation to the mean-plus-noise model:

yt =)t + �t ;

)t =)t−1 + vt ;

where

vt =
{
0 w:p: 1− p;
wt w:p: p;

�t
iid∼N(0; %2� ) and wt

iid∼N(0; %2w). They note, moreover, that although other ap-
proximations to the mean-plus-noise model are available, the STOPBREAK
model is designed to bridge the gap between transience and permanence of
shocks and therefore provides a better approximation, for example, than an
exponential smoother, which is the best linear approximation.
We now introduce a simple modi@cation. We allow � to change with T

and write

yt =)t + �t ;

)t =)t−1 +
�2t−1

�T + �2t−1
�t−1:

Variances of partial sums of this process will match those of a fractionally
integrated process under certain conditions, the key element of which involves
the nature of time variation in �.
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Proposition 2. If (a) E(�6t )¡∞ and (b) �T → ∞ as T → ∞ and �T =O(T*)
for some *¿ 0; then the variances of partial sums of y grow at a rate
corresponding to I(1− *) behavior.

Proof. Note that

var

(
T∑
t=1

Vyt

)
=var

(
�T − �0 +

T∑
t=1

�3t−1

�T + �2t−1

)

=var(�T − �0) + var

(
T∑
t=1

�3t−1

�T + �2t−1

)
− 2E

(
�40

�T + �20

)

=2%2 − 2E

(
�40

�T + �20

)

+T


E

(
�6t−1

(�T + �2t−1)
2

)
−
[
E

(
�3t−1

�T + �2t−1

)]2


=O(T=�2T )

=O(T 1−2*)

=O(T 2(−*)+1);

where the second equality follows from the maintained assumption that
�t

iid∼N(0; %2� ), the fourth equality follows from Assumption (a), and the @fth
from Assumption (b). Thus variances of partial sums of Vy grow at a rate
corresponding to I(−*) behavior, so variances of partial sums of y grow at
a rate corresponding to I(1− *) behavior.

It is interesting to note that the standard STOPBREAK model corresponds to
�T = �, which corresponds to *=0. Hence the standard STOPBREAK model
is I(1).

3.3. The Markov-switching model

All of the models considered thus far are eIectively mixture models. The
mean-plus-noise model and its relatives are explicit mixture models, and the
STOPBREAK model is an approximation to the mean-plus-noise model. We
now consider a richer dynamic mixture model, the Markov-switching model
of Hamilton (1989).
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Let {st}Tt=1 be the (latent) sample path of two-state @rst-order autoregressive
process, taking the value 0 or 1, with transition probability matrix given by

M =
(

p00 1− p00

1− p11 p11

)
:

The ijth element of M gives the probability of moving from state i (at time
t − 1) to state j (at time t). Note that there are only two free parameters,
the staying probabilities, p00 and p11. Let {yt}Tt=1 be the sample path of
an observed time series that depends on {st}Tt=1 such that the density of yt
conditional upon st is

f(yt |st; +)= 1√
2�%

exp
(−(yt − )st)2

2%2

)
:

Thus, yt is Gaussian white noise with a potentially switching mean, and we
write

yt =)st + �t ;

where �t
iid∼N(0; %2) and st and �� are independent for all t and �.5

Variances of partial sums of the Markov-switching process will match those
of a fractionally integrated process under certain conditions, which as the
reader who has progressed to this point will surely suspect, involve the nature
of time variation in p00 and p11.

Proposition 3. Assume that (a) )0 �=)1 and that (b) p00 = 1 − c0T−*0 and
p11 = 1 − c1T−*1 ; with *0; *1¿ 0 and 0¡c0; c1¡ 1. Then the variances of
partial sums of y grow at a rate corresponding to I((1=2)max(min(*0; *1)−
|*0 − *1|; 0)) behavior.

Proof. Let ,t =(I(st =0) I(st =1))′; )=()0; )1); and -j=E(,t,′t−j). Then
yt =)′,t + �t , so

var

(
T∑
t=1

yt

)
=var

(
T∑
t=1

)′,t

)
+ T%2

= )′


-0T +

T∑
j=1

(T − j)(-j + -′
j)


)+ T%2:

5 In the present example, only the mean switches across states. We could, of course, examine
richer models with several parameters switching across states, but the simple model used here
illustrates the basic idea.
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For every T , the Markov chain is ergodic. Hence the unconditional variance–
covariance matrix of ,t is

-0 =
(1− p00)(1− p11)
(2− p00 − p11)2

(
1 −1
−1 1

)
=O(1):

Now let

.=p00 + p11 − 1=1− c0T−*0 − c1T−*1 :

Then the jth autocovariance matrix of ,t is 6

-j=Mj-0 =
(1− p00)(1− p11)
(2− p00 − p11)2

[
.j −.j
−.j .j

]
;

M j=



(1− p11) + .j(1− p00)

2− p00 − p11

(1− p11)− .j(1− p11)
2− p00 − p11

(1− p00)− .j(1− p00)
2− p00 − p11

(1− p00) + .j(1− p11)
2− p00 − p11


 :

Thus

1
T
var

(
T∑
t=1

yt

)
=O(1) +O

(
(1− p00)(1− p11)

(1− .)(2− p00 − p11)2

)

=O(1) +O(Tmin(*0 ; *1)−|*0−*1|);

which in turn implies that

var

(
T∑
t=1

yt

)
=O(Tmax(min(*0 ; *1)−|*0−*1|+1;1));

which completes the proof.

It is interesting to note that the transition probabilities do not depend on
T in the standard Markov-switching model, which corresponds to *0 = *1 = 0:
Thus the standard Markov-switching model is I(0), unlike the mean-plus-noise
or STOPBREAK models, which are I(1).7

Although we have not worked out the details, we conjecture that results
similar to those reported here could be obtained in straightforward fashion
for the threshold autoregressive (TAR) model, the smooth transition TAR
model, and for reKecting barrier models of various sorts, by allowing the
thresholds or reKecting barriers to change appropriately with sample size.

6 See Hamilton (1994, p. 683) for the formula giving Mj in terms of p00; p11, and ..
7 In spite of the fact that it is truly I(0), the standard Markov-switching model can nevertheless

generate high persistence at short lags, as noted by Timmermann (2000) and veri@ed in our
subsequent Monte Carlo.
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Similarly, we conjecture that Balke and Fomby (1997) threshold cointegration
may be confused with fractional cointegration, for a suitably adapted series of
thresholds, and that the Diebold and Rudebusch (1996) dynamic factor model
with Markov-switching factor may be confused with fractional cointegration,
for suitably adapted transition probabilities.

4. A Monte Carlo exploration

Our analysis thus far suggests that, under certain plausible conditions
amounting to nonzero but “small” amounts of structural change, long mem-
ory and structural change may be confused. Motivated by the theory, we now
perform a series of related Monte Carlo experiments. We simulate 10,000 re-
alizations from various models of stochastic regime switching, and we charac-
terize the @nite-sample inference to which a researcher armed with a standard
estimator of the long-memory parameter would be led.
We use the log-periodogram regression estimator proposed by Geweke and

Porter-Hudak (GPH, 1983) and re@ned by Robinson (1994b, 1995). In partic-
ular, let I(!j) denote the sample periodogram at the jth Fourier frequency,
!j=2�j=T; j=1; 2; : : : ; [T=2]. The estimator of the parameter of fractional
integration, d, is then based on the least-squares regression

log[I(!j)]=/0 + /1 log(!j) + uj;

where j=1; 2; : : : ; m, and d̂=−1=2/̂1.
8 The least-squares estimator of /1, and

hence d̂, is asymptotically normal and the corresponding theoretical standard
error, �(24m)−1=2, depends only on the number of periodogram ordinates
used.
Of course, the actual value of the estimate of d̂ also depends upon the

particular choice of m. While the formula for the theoretical standard error
suggests choosing a large value of m in order to obtain a small standard
error, doing so may induce a bias in the estimator, because the relationship
underlying the GPH regression in general holds only for frequencies close to
zero. It turns out that consistency requires that m grows with sample size,
but at a slower rate. Use of m=

√
T has emerged as a popular rule of thumb,

which we adopt.

8 The calculations in Hurvich and Beltrao (1994) suggest that the estimator proposed by
Robinson (1994b, 1995), which leaves out the very lowest frequencies in the regression in the
GPH regression, has larger MSE than the original Geweke and Porter-Hudak (1983) estimator
de@ned over all of the @rst m Fourier frequencies. For that reason, we include periodogram
ordinates at all of the @rst m Fourier frequencies.
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Fig. 1. Realization of length 10,000 of the mean-plus-noise process described in the text.

4.1. Mean-plus-noise model

We @rst consider the @nite-sample behavior of the mean-plus-noise model.
We parameterize the model as

yt =)t + �t ;

)t =)t−1 + vt ;

vt =
{
0 w:p: 1− p;
wt w:p: p;

where �t
iid∼N(0; 1) and wt

iid∼N(0; 1); t=1; 2; : : : ; T . To build intuition before
proceeding to the Monte Carlo, we @rst show in Fig. 1 a speci@c realization
of the mean-plus-noise model with p=0:01 and T =10; 000. It is clear that
there are only a few breaks, with lots of noise superimposed. In Fig. 2 we
plot the average log periodogram against log frequency for the same process,
using

√
10; 000 periodogram ordinates, where the averaging is done across

10; 000 replications. The low-frequency log-periodogram looks approximately
linear.
Now we proceed to the Monte Carlo analysis. We vary p and T , examining

all pairs of p∈{0:0001; 0:0005; 0:001; 0:005; 0:01; 0:05; 0:1} and T ∈{100; 200;
300; 400; 500; 1000; : : : ; 5000}. In Table 1 we report the empirical sizes of
nominal 5% tests of d=0. They are increasing in T and p, which makes
sense for two reasons. First, for @xed p¿ 0, the null is in fact false, so
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Fig. 2. The average of each of the @rst 100 log-periodogram ordinates across 10,000 simulated
realizations of the mean-plus-noise process, each of length 10,000.

Table 1
Mean-plus-noise model: empirical sizes of nominal 5% tests of d=0a

p

T 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

100 0.165 0.169 0.180 0.268 0.355 0.733 0.866
200 0.141 0.167 0.202 0.412 0.590 0.941 0.979
300 0.141 0.186 0.239 0.554 0.749 0.986 0.994
400 0.128 0.195 0.276 0.670 0.867 0.996 0.998
500 0.127 0.210 0.313 0.755 0.922 0.999 1.000
1000 0.146 0.337 0.519 0.953 0.996 1.000 1.000
1500 0.177 0.452 0.674 0.993 1.000 1.000 1.000
2000 0.207 0.555 0.778 0.999 1.000 1.000 1.000
2500 0.234 0.634 0.850 1.000 1.000 1.000 1.000
3000 0.265 0.703 0.898 1.000 1.000 1.000 1.000
3500 0.293 0.762 0.931 1.000 1.000 1.000 1.000
4000 0.318 0.807 0.957 1.000 1.000 1.000 1.000
4500 0.355 0.840 0.972 1.000 1.000 1.000 1.000
5000 0.380 0.873 0.983 1.000 1.000 1.000 1.000

aT denotes sample size and p denotes the mixture probability. We report the fraction of
10,000 trials in which inference based on the Geweke–Porter–Hudak procedure leads to rejection
of the hypothesis that d=0, using a nominal 5% test based on

√
T periodogram ordinates.
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Table 2
Mean-plus-noise model: empirical sizes of nominal 5% tests of d=1a

p

T 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

100 0.373 0.376 0.376 0.353 0.343 0.290 0.277
200 0.481 0.475 0.470 0.424 0.383 0.277 0.258
300 0.516 0.505 0.494 0.419 0.355 0.246 0.250
400 0.523 0.509 0.488 0.390 0.315 0.239 0.238
500 0.568 0.548 0.526 0.399 0.318 0.230 0.231
1000 0.639 0.596 0.542 0.351 0.262 0.223 0.211
1500 0.681 0.617 0.550 0.303 0.235 0.201 0.198
2000 0.705 0.616 0.542 0.277 0.216 0.200 0.197
2500 0.721 0.621 0.526 0.255 0.211 0.195 0.194
3000 0.735 0.616 0.520 0.247 0.200 0.193 0.185
3500 0.751 0.624 0.502 0.232 0.208 0.182 0.185
4000 0.761 0.619 0.497 0.226 0.195 0.181 0.179
4500 0.767 0.615 0.495 0.223 0.191 0.181 0.183
5000 0.763 0.593 0.463 0.209 0.199 0.179 0.184

aT denotes sample size and p denotes the mixture probability. We report the fraction of
10,000 trials in which inference based on the Geweke–Porter–Hudak procedure leads to rejection
of the hypothesis that d=1, using a nominal 5% test based on

√
T periodogram ordinates.

power increases in T by consistency of the test. 9 Second, for @xed T , we
have more power to detect I(1) behavior as p grows, because we have a
greater number of nonzero innovations, whose eIects we can observe.
The thesis of this paper is that structural change may be easily confused

with fractional integration, so it is important to be sure that we are not reject-
ing the d=0 hypothesis simply because of a unit root. Hence we also test the
d=1 hypothesis. The results appear in Table 2, which reports empirical sizes
of nominal 5% tests of d=1, executed by testing d=0 on diIerenced data
using the GPH procedure. The d=1 rejection frequencies decrease with T ,
because the null is in fact true. They also decrease sharply with p, because
the eIective sample size grows quickly as p grows.
In Fig. 3 we plot kernel estimates of the density of d̂ for T ∈{400; 1000;

2500; 5000} and p∈{0:0001; 0:0005; 0:001; 0:005; 0:01; 0:05; 0:1}. 10 Fig. 3 il-
luminates the way in which the GPH rejection frequencies increase with p
and T . The density estimates shift gradually to the right as p and T increase.
For small p, the estimated densities are bimodal in some cases. Evidently

9 When p=0, the process is white noise and hence I(0). For all p¿ 0, the change in the
mean process is iid, and hence the mean process is I(1), albeit with highly non-Gaussian
increments. When p=1, the mean process is a Gaussian random walk.
10 Here and in all subsequent density estimation, we select the bandwidth by Silverman’s rule,

and we use an Epanechnikov kernel.
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Fig. 3. Kernel density estimates of the distribution of the Geweke–Porter–Hudak
log-periodogram regression estimates of the fractional integration parameter d, based on

√
T

periodogram ordinates. T denotes sample size and p denotes the mixture probability.

the bimodality results from a mixture of two densities: one is the density of
d̂ when no structural change occurs, and the other is the density of d̂ when
there is at least one break.
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Table 3
Mean-plus-noise model: mean estimate of the fractional integration parameter, da

p

T 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

100 0.008 0.015 0.030 0.120 0.210 0:580 0.727
200 0.005 0.029 0.056 0.232 0:392 0.752 0.851
300 0.012 0.048 0.090 0.338 0:503 0.827 0.894
400 0.013 0.061 0.117 0:412 0.591 0.864 0.920
500 0.016 0.075 0.141 0:476 0.648 0.892 0.937
1000 0.036 0.155 0.275 0:668 0.795 0.943 0.970
1500 0.052 0.223 0:377 0.754 0.850 0.964 0.981
2000 0.072 0.290 0:455 0.802 0.884 0.970 0.985
2500 0.087 0.334 0:512 0.831 0.904 0.977 0.989
3000 0.103 0.387 0:567 0.857 0.917 0.981 0.990
3500 0.121 0:430 0.608 0.872 0.928 0.985 0.992
4000 0.133 0:467 0.640 0.887 0.936 0.986 0.992
4500 0.156 0:498 0.667 0.897 0.943 0.988 0.996
5000 0.168 0:529 0.694 0.907 0.949 0.988 0.995

aT denotes sample size and p denotes the mixture probability. We report the average (across
10,000 trials) of the Geweke–Porter–Hudak log-periodogram regression estimates of the frac-
tional integration parameter d, based on

√
T periodogram ordinates.

Finally, in Table 3, we show the mean value of d̂ for the same wide range
of T and p values as in Tables 1 and 2. This facilitates a crude check of
the asymptotics, by checking whether taking p=O(T 2d−2), as T increases,
produces the appearance of fractional integration with parameter d. The results
are encouraging, as illustrated, for example, by the underlined entries in the
table, obtained by taking p∗=2:6T 2d−2 = 2:6T 2×0:5−2 and then underlining
the mean value of d̂ whose p is closest to p∗. As the theory predicts, all of
the resulting mean values of d̂ are close to 0.5.

4.2. Stochastic permanent break model

Next, we consider the @nite-sample behavior of the STOPBREAK model:

yt =)t + �t ;

)t =)t−1 +
�2t−1

�+ �2t−1
�t−1;

with �t
iid∼N(0; 1). In Fig. 4 we show a speci@c realization of the STOP-

BREAK process with �=500 and T =10; 000. Because the evolution of the
STOPBREAK process is smooth, as it is only an approximation to a mix-
ture model, we do not observe sharp breaks in the realization. In Fig. 5 we
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Fig. 4. Realization of length 10,000 of the STOPBREAK process described in the text.

Fig. 5. The average of each of the @rst 100 log-periodogram ordinates across 10,000 simulated
realizations of the STOPBREAK process, each of length 10,000.

plot the average log periodogram against log frequency, using
√
10; 000 pe-

riodogram ordinates and 10,000 replicated realizations of the process. The
low-frequency periodogram looks linear.
In the Monte Carlo experiment, we examine all pairs of �∈{10−5; 10−4; : : : ;

103; 104} and T ∈{100; 200; 300; 400; 500; 1000; 1500; : : : ; 5000}. In Table 4
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Table 4
Stochastic permanent break model: empirical sizes of nominal 5% tests of d=0a

�

T 10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

100 0.976 0.978 0.978 0.978 0.977 0.971 0.844 0.195 0.167 0.166
200 0.995 0.995 0.995 0.995 0.996 0.995 0.972 0.292 0.134 0.134
300 0.999 0.999 0.999 0.999 0.998 0.999 0.993 0.444 0.123 0.121
400 0.999 0.999 0.999 1.000 1.000 0.999 0.998 0.587 0.120 0.119
500 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.697 0.115 0.114
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.951 0.118 0.101
1500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.158 0.091
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.213 0.090
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.266 0.082
3000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.341 0.084
3500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.415 0.078
4000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.486 0.084
4500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.554 0.081
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.615 0.080

aT denotes sample size and � denotes the STOPBREAK parameter. We report the fraction
of 10,000 trials in which inference based on the Geweke–Porter–Hudak procedure leads to
rejection of the hypothesis that d=0, using a nominal 5% test based on

√
T periodogram

ordinates.

we report the empirical sizes of nominal 5% tests of d=0. The d=0 rejection
frequencies are increasing in T and decreasing in �, which makes intuitive
sense. First consider @xed � and varying T . The STOPBREAK process is
I(1) for all �¡∞, so the null of d=0 is in fact false, and power increases
in T by consistency of the test. Now consider @xed T and varying �. For all
�¡∞, the change in the mean process is iid, and hence the mean process is
I(1), albeit with non-Gaussian increments. But we have less power to detect
I(1) behavior as � grows, because we have a smaller eIective sample size.11

In fact, as � approaches ∞, the process approaches I(0) white noise.
As before, we also test the d=1 hypothesis by employing GPH on dif-

ferenced data. In Table 5 we report the empirical sizes of nominal 5% tests
of d=1. The rejection frequencies tend to be decreasing in T and increas-
ing in �, which makes sense for the reasons sketched above. In particular,
because the STOPBREAK process is I(1), the d=1 rejection frequencies
should naturally drop toward nominal size as T grows. Alternatively, it be-
comes progressively easier to reject d=1 as � increases, for any @xed T ,
because the STOPBREAK process gets closer to I(0) as � increases.

11 The last two columns of the table, however, reveal a nonmonotonicity in T : empirical size
@rst drops and then rises with T .
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Table 5
Stochastic permanent break model: empirical sizes of nominal 5% tests of d=1a

�

T 10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

100 0.176 0.174 0.175 0.176 0.175 0.176 0.379 0.729 0.742 0.742
200 0.133 0.133 0.133 0.133 0.134 0.141 0.318 0.833 0.842 0.843
300 0.121 0.121 0.122 0.123 0.121 0.124 0.250 0.838 0.848 0.849
400 0.122 0.122 0.121 0.119 0.123 0.119 0.206 0.841 0.859 0.859
500 0.116 0.116 0.116 0.117 0.116 0.114 0.196 0.861 0.872 0.873
1000 0.098 0.098 0.098 0.098 0.100 0.099 0.133 0.892 0.913 0.912
1500 0.091 0.091 0.092 0.092 0.096 0.095 0.110 0.904 0.922 0.923
2000 0.088 0.088 0.088 0.088 0.088 0.086 0.101 0.906 0.936 0.936
2500 0.084 0.084 0.084 0.085 0.080 0.079 0.087 0.910 0.945 0.946
3000 0.082 0.082 0.083 0.083 0.081 0.082 0.084 0.911 0.947 0.947
3500 0.082 0.082 0.083 0.081 0.079 0.081 0.082 0.910 0.953 0.954
4000 0.083 0.083 0.083 0.083 0.081 0.081 0.083 0.904 0.960 0.959
4500 0.079 0.079 0.079 0.079 0.077 0.078 0.083 0.904 0.961 0.961
5000 0.075 0.075 0.075 0.075 0.076 0.076 0.079 0.891 0.963 0.963

aT denotes sample size and � denotes the STOPBREAK parameter. We report the fraction
of 10,000 trials in which inference based on the Geweke–Porter–Hudak procedure leads to
rejection of the hypothesis that d=1, using a nominal 5% test based on

√
T periodogram

ordinates.

In Fig. 6 we show kernel estimates of the density of d̂ for T ∈{400; 1000;
2500; 5000} and �∈{10−5; 10−4; : : : ; 103; 104}. As the sample size grows, the
estimated density shifts to the right and the median of d̂ approaches unity
for �¡ 10; 000. This is expected because the STOPBREAK process is I(1).
However, as � increases, the eIective sample size required to detect this
nonstationarity also increases. As a result, when � is large, the median of d̂
is below unity even for a sample of size 5000.

4.3. Markov switching

Lastly, we analyze the @nite-sample properties of the Markov-switching
model. The model is

yt =)st + �t ;

where �t
iid∼N(0; %2), and st and �� are independent for all t and �. We take

)0 = 0 and )1 = 1. In Fig. 7 we plot a speci@c realization with p00 =p11 =
0:9995 and T =10; 000. It appears that the regime has changed several times
in this particular realization. In Fig. 8 we plot the corresponding average
log periodogram against log frequency, using

√
10; 000=100 periodogram
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Fig. 6. Kernel density estimates of the distribution of the Geweke–Porter–Hudak
log-periodogram regression estimates of the fractional integration parameter d, based on

√
T

periodogram ordinates. T denotes sample size and � denotes the STOPBREAK parameter.
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Fig. 7. Realization of length 10,000 of the Markov-switching process described in the text.

Fig. 8. The average of each of the @rst 100 log-periodogram ordinates across 10,000 simulated
realizations of the Markov-switching process, each of length 10,000.

ordinates and 10,000 replicated realizations of the process; low-frequency
linearity of the log periodogram appears to be a good approximation.
In the Monte Carlo analysis, we explore p00 ∈{0:95; 0:99; 0:999}, p11 ∈

{0:95; 0:99; 0:999}, and T ∈{100; 200; 300; 400; 500; 1000; 1500; : : : ; 5000}. In
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Table 6
Markov-switching model: empirical sizes of nominal 5% tests of d=0a

p00 0.95 0.95 0.95 0.99 0.99 0.99 0.999 0.999 0.999
T p11 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

100 0.417 0.332 0.186 0.329 0.375 0.208 0.186 0.213 0.196
200 0.476 0.425 0.180 0.420 0.618 0.257 0.179 0.262 0.232
300 0.478 0.482 0.187 0.482 0.761 0.313 0.189 0.313 0.290
400 0.487 0.514 0.185 0.522 0.858 0.350 0.190 0.353 0.344
500 0.460 0.529 0.188 0.541 0.907 0.392 0.191 0.393 0.398
1000 0.383 0.559 0.214 0.561 0.981 0.549 0.212 0.554 0.628
1500 0.317 0.552 0.210 0.547 0.991 0.643 0.216 0.644 0.758
2000 0.266 0.523 0.213 0.522 0.995 0.716 0.215 0.716 0.849
2500 0.235 0.498 0.213 0.506 0.996 0.772 0.217 0.775 0.903
3000 0.205 0.472 0.211 0.462 0.997 0.813 0.208 0.810 0.941
3500 0.188 0.444 0.211 0.458 0.997 0.847 0.207 0.849 0.963
4000 0.174 0.415 0.203 0.432 0.997 0.869 0.206 0.865 0.975
4500 0.155 0.405 0.200 0.399 0.998 0.887 0.201 0.888 0.984
5000 0.143 0.367 0.195 0.375 0.997 0.902 0.190 0.903 0.990

aT denotes sample size, and 1−p00 and 1−p11 denote the Markov transition probabilities.
We report the fraction of 10,000 trials in which inference based on the Geweke–Porter–Hudak
procedure leads to rejection of the hypothesis that d=0, using a nominal 5% test based on√
T periodogram ordinates.

Table 6 we show the empirical sizes of nominal 5% tests of d=0. When
both p00 and p11 are well away from unity, such as when p00 =p11 = 0:95,
the rejection frequencies eventually decrease as the sample size increases,
which makes sense because the process is I(0). In contrast, when both p00

and p11 are large, such as when p00 =p11 = 0:999, the rejection frequency
is increasing in T . This would appear inconsistent with the fact that the
Markov-switching model is I(0) for any @xed p00 and p11, but it is not, as
the dependence of rejection frequency on T is not monotonic. If we included
T ¿ 5000 in the design, we would eventually see the rejection frequency
decrease.
In Table 7 we tabulate the empirical sizes of nominal 5% tests of d=1.

Although the persistence of the Markov-switching model is increasing in p00

and p11, it turns out that it is nevertheless very easy to reject d=1 in this
particular experimental design.
In Fig. 9 we plot kernel estimates of the density of d̂ for p00; p11 ∈{0:95;

0:99; 0:999} and T ∈{400; 1000; 2500; 5000}. When both p00 and p11 are
away from unity, the estimated density tends to shift to the left and the
median of d̂ converges to zero as the sample size grows. When both p00 and
p11 are near unity, the estimated density tends to shift to the right. These
observations are consistent with our theory as discussed before. When p00

and p11 are close to unity and when T is relatively small, the regime does
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Table 7
Markov-switching model: empirical sizes of nominal 5% tests of d=1a

p00 0.95 0.95 0.95 0.99 0.99 0.99 0.999 0.999 0.999
T p11 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

100 0.633 0.676 0.736 0.675 0.674 0.732 0.735 0.730 0.735
200 0.784 0.783 0.831 0.787 0.761 0.822 0.833 0.824 0.832
300 0.840 0.816 0.853 0.823 0.776 0.840 0.858 0.842 0.849
400 0.876 0.843 0.866 0.840 0.778 0.844 0.862 0.843 0.852
500 0.912 0.875 0.886 0.877 0.814 0.870 0.885 0.867 0.875
1000 0.969 0.939 0.918 0.938 0.869 0.901 0.915 0.901 0.903
1500 0.983 0.959 0.927 0.959 0.902 0.909 0.927 0.907 0.903
2000 0.994 0.978 0.948 0.980 0.935 0.931 0.944 0.931 0.927
2500 0.996 0.986 0.957 0.986 0.954 0.941 0.954 0.939 0.930
3000 0.998 0.988 0.960 0.991 0.969 0.948 0.959 0.945 0.934
3500 0.998 0.993 0.966 0.994 0.981 0.956 0.966 0.958 0.947
4000 0.999 0.994 0.971 0.995 0.984 0.962 0.970 0.961 0.948
4500 0.999 0.996 0.975 0.997 0.990 0.966 0.974 0.966 0.951
5000 1.000 0.998 0.975 0.997 0.992 0.968 0.977 0.969 0.951

aT denotes sample size, and 1−p00 and 1−p11 denote the Markov transition probabilities.
We report the fraction of 10,000 trials in which inference based on the Geweke–Porter–Hudak
procedure leads to rejection of the hypothesis that d=1, using a nominal 5% test based on√
T periodogram ordinates.

not change with positive probability and, as a result, the estimated densities
appear bimodal.
In closing this sub-section, we contrast our results for the Markov-switching

model with those of RydZen et al. (1998), who @nd that the Markov-switching
model does a poor job of mimicking long memory, which would seem to
conKict with both our theoretical and Monte Carlo results. However, our
theory requires that all diagonal elements of the transition probability matrix
be near unity. In contrast, nine of the ten Markov-switching models estimated
by RydZen et al. have at least one diagonal element well away from unity.
Only their estimated model H satis@es our condition, and its dynamics are in
fact highly persistent. Hence the results are entirely consistent.

5. Summary and concluding remarks

We have argued that structural change in general, and stochastic regime
switching in particular, are intimately related to long memory and easily con-
fused with it, so long as only a small amount of regime switching occurs
in an observed sample path. We provided theoretical analysis of several en-
vironments, including a simple mixture model, Engle and Smith’s (1999)
stochastic permanent break model, and Hamilton’s (1989) Markov-switching
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Fig. 9. Kernel density estimates of the distribution of the Geweke–Porter–Hudak
log-periodogram regression estimates of the fractional integration parameter d, based on

√
T

periodogram ordinates. T denotes sample size, and 1 − p00 and 1 − p11 denote the Markov
transition probabilities.
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model. Simulations support the relevance of the theory in @nite samples and
make clear that the confusion is not merely a theoretical curiosity, but rather
a distinct possibility in routine empirical economic and @nancial applications.
In what remains of this paper, we furnish additional perspective on our

results, in two ways. First, we expand on the nature of the confusion between
regime switching and the appearance of long memory studied in our paper.
Second, we situate our work within the context of several related recent
contributions.

5.1. On the theoretical perspective

Our device of letting certain parameters such as mixture probabilities vary
with T is simply a thought experiment that proves useful for thinking about
the appearance of long memory. We view our theory as eIectively providing
a “local to no breaks” perspective, in parallel to the use of “local-to-unity”
asymptotics in autoregressions, a thought experiment that proves useful for
characterizing the distribution of the dominant root. But just as in the context
of a local-to-unity autoregressive root, which does not require that one literally
believe that the root satis@es 0=1− c=T as T grows, we do not require that
one literally believe that the mixture probability satis@es p= cT 2d−2 as T
grows.
In practice, and in the Monte Carlo analysis that we performed, we are

not interested in, and we do not explore, models with truly time-varying
parameters (such as time-varying mixture probabilities). Similarly, we are not
interested in expanding samples with size approaching in@nity. Instead, our
interest centers on @xed-parameter models with @xed @nite T , the dynamics
of which are in fact either I(0) or I(1). The theory suggests that confusion
with fractional integration will result when only a small amount of breakage
occurs, and therefore that the larger is T , the smaller must be the break
probability, if confusion is to arise.
Our approach diIers in an important sense from that of

Granger–Mandelbrot–Taqqu–Parke, who develop models that are truly frac-
tionally integrated and could for example be used to simulate realizations
of such processes. In contrast, we use a certain asymptotic perspective to
guide our thinking about whether and when @nite-sample paths of truly I(0)
or I(1) processes might nevertheless appear fractionally integrated, not as a
device for producing sample paths of truly fractionally integrated processes.
In our framework, the appearance of long memory requires models with rare
breaks with lingering eIects, whether truly I(0) or I(1). The fact that they
occur rarely makes it hard to divine their nature and, under certain conditions,
makes them appear fractionally integrated.
In all of the asymptotic thought experiments entertained in this paper,

breaks are of the same stochastic size when they occur, but their probability
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of occurrence drops with T . We have not emphasized the dual case in which
breaks occur with constant probability, but their stochastic size shrinks with
T , because it is less likely to generate confusion between regime switching
and fractional integration. Consider, for example, the following simple model
for the mean of a series, in which a “break” in the mean occurs each period:

)t =)t−1 +
√
cwt;

where wt
iid∼N(0; 1); �t

iid∼N(0; %2� ), and c¿ 0. If c shrinks with T at an appro-
priate rate, then the variances of partial sums of )t will obviously grow at
rates consistent with fractional integration. Yet it is unlikely that a realization
of such a process would be mistaken as fractionally integrated; breaks occur
each period, so it is easy to learn about the associated dynamics, and even the
simplest data analytic methods would reveal that V)t is simply independent
white noise (with @xed variance c(T ), for any @xed T ).

5.2. Related work

Here we sketch the relationship of our work to several recent and closely
related contributions. First, Granger and TerGasvirta (1999) consider the fol-
lowing simple nonlinear process:

yt =sign(yt−1) + �t ;

where �t
iid∼N(0; %2). This process behaves like a regime-switching process

and, theoretically, the autocorrelations should decline exponentially. They
show, however, that as the tail probability of �t decreases (presumably by
decreasing the value of %2) so that there are fewer regime switches for any
@xed sample size, long memory seems to appear, and the implied d estimates
begin to grow. The Granger–TerGasvirta results, however, are based on sin-
gle realizations (not Monte Carlo analysis), and no theoretical explanation is
provided.
Second, in contemporaneous, independent and complementary work,

Granger and Hyung (1999) develop a theory closely related to ours. They
consider a mean-plus-noise model, and they show that its autocorrelations
decay very slowly if p=O(1=T ). Their result is a special case of ours, with
d=0:5. Importantly, moreover, we show that p=O(1=T ) is not necessary to
obtain the appearance of long memory, and we provide a link between the
convergence rate of p and the apparent long-memory parameter d. We also
provide related results for STOPBREAK models and Markov-switching mod-
els, as well as an extensive Monte Carlo analysis of @nite-sample eIects. On
the other hand, Granger and Hyung consider some interesting topics which
we have not considered in the present paper, such as common breaks in
multivariate time series.
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Finally, we note that our results are in line with those of Mikosch and
St[aric[a (1999), who @nd structural change in asset return dynamics and ar-
gue that it could be responsible for evidence of long memory. We believe,
however, that the temptation to jump to conclusions of “structural change
producing spurious inferences of long memory” should be resisted, as such
conclusions are potentially naive. Even if the “truth” is structural change,
long memory may be a convenient shorthand description, which may remain
very useful for tasks such as prediction. 12 Moreover, at least in the sorts of
circumstances studied in this paper, “structural change” and “long memory”
are eIectively diIerent labels for the same phenomenon, in which case at-
tempts to label one as “true” and the other as “spurious” may be of dubious
value.
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