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This paper studies a classical extension of the Black and Scholes model for option pricing, often
known as the Hull and White model. Our specification is that the volatility process is assumed not only
to be stochastic, but also to have long-memory features and properties. We study here the implications
of this continuous-time long-memory model, both for the volatility process itself as well as for the
global asset price process. We also compare our model with some discrete time approximations. Then
the issue of option pricing is addressed by looking at theoretical formulas and properties of the implicit
volatilities as well as statistical inference tractability. Lastly, we provide a few simulation experiments
to illustrate our results.
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1. INTRODUCTION

If option prices in the market were conformable with the Black—Scholes (1973) formula,
all the Black—Scholes implied volatilities corresponding to various options written on the
same asset would coincide with the volatility parametef the underlying asset. In reality

this is not the case, and the Black—Scholes (BS) implied volatﬂw heavily depends

on the calendar timg the time to maturityT — t, and the moneyness of the option. This
may produce various biases in option pricing or hedging when BS implied volatilities are
used to evaluate new options or hedging ratios. These price distortions, well-known to
practitioners, are usually documented in the empirical literature under the terminology of
the smile effect, where the so-called “smile” refers to the U-shaped pattern of implied
volatilities across different strike prices.

Itis widely believed that volatility smiles can be explained to a great extent by a modeling
of stochastic volatility, which could take into account not only the so-called volatility
clustering (i.e., bunching of high and low volatility episodes) but also the volatility effects
of exogenous arrivals of information. This is why Hull and White (1987), Scott (1987), and
Melino and Turnbull (1990) have proposed an option pricing model in which the volatility
of the underlying asset appears not only time-varying but also associated with a specific
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risk according to the “stochastic volatility” (SV) paradigm

(1.1) { 480 — pu(t, St)dt + o O dw(t)

d(no (1)) = k(@ — Ino(t))dt + ydw?(t),

whereS(t) denotes the price of the underlying assdt) is its instantaneous volatility, and
(wl(t), w?(t)) is a nondegenerate bivariate Brownian process. The nondegenerate feature
of (w!, w?) is characteristic of the SV paradigm, in contrast to continuous-time ARCH-
type models where the volatility process is a deterministic function of past values of the
underlying asset price.

The logarithm of the volatility is assumed to follow an Ornstein—Uhlenbeck process,
which ensures that the instantaneous volatility process is stationary, a natural way to gener-
alize the constant-volatility Black and Scholes model. Indeed, any positive-valued station-
ary process could be used as a model of the stochastic instantaneous volatility (see Ghysels,
Harvey and Renault (1996) for a review). Of course, the choice of a given statistical model
for the volatility process heavily influences the deduced option pricing formula. More pre-
cisely, Hull and White (1987) show that, under specific assumptions, the price dtdime
a European option of exercise ddtes the expectation of the Black and Scholes option
pricing formula where the constant volatilityis replaced by its quadratic average over the
period:

1 T
(12) O—ST = ﬁ[ O'Z(U)du,

and where the expectation is computed with respect to the conditional probability distri-
bution ofafT giveno (t). In other words, the square of implied Black—Scholes volatility
at"”}p appears to be a forecast of the temporal aggregaﬁgrmf the instantaneous volatility
viewed as a flow variable.

It is now well known that such a model is able to reproduce some empirical stylized
facts regarding derivative securities and implied volatilities. A symmetric smile is well
explained by this option pricing model with the additional assumption of independence
betweernw?! andw? (see Renault and Touzi (1996)). Skewness may explain the correlation
of the volatility process with the price process innovations, the so-called leverage effect
(see Hull and White 1987). Moreover, a striking empirical regularity that emerges from
numerous studies is the decreasing amplitude of the smile being a function of time to
maturity; for short maturities the smile effect is very pronounced (BS implied volatilities
for synchronous option prices may vary between 15% and 25%), but it almost completely
disappears for longer maturities. This is conformable to a formula like (1.2) because it
shows that, when time to maturity is increased, temporal aggregation of volatilities erases
conditional heteroskedasticity, which decreases the smile phenomenon.

The main goal of the present paper is to extend the SV option pricing model in order
to capture well-documented evidencevofatility persistenceand particularly occurrence
of fairly pronounced smile effects even for rather long maturity options. In practice, the
decrease of the smile amplitude when time to maturity increases turns out to be much
slower than it goes according to the standard SV option pricing model in the setting (1.1).
This evidence is clearly related to the so-called volatility persistence, which implies that
temporal aggregation (1.2) is not able to fully erase conditional heteroskedasticity.

Generally speaking, there is widespread evidence that volatility is highly persistent.
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Particularly for high frequency data one finds evidence of near unit root behavior of the
conditional variance process. In the ARCH literature, numerous estimates of GARCH
models for stock market, commaodities, foreign exchange, and other asset price series are
consistent with an IGARCH specification. Likewise, estimation of stochastic volatility
models show similar patterns of persistence (see, e.g., Jacquier, Polson and Rossi 1994).
These findings have led to a debate regarding modeling persistence in the conditional
variance process either via a unit root or a long memory-process. The latter approach has
been suggested both for ARCH and SV models; see Baillie, Bollerslev, and Mikkelsen
(1996), Breidt, Crato, and De Lima (1993), and Harvey (1993). This allows one to consider
mean-reverting processes of stochastic volatility rather than the extreme behavior of the
IGARCH process which, as noticed by Baillie et al. (1996), has low attractiveness for asset
pricing since “the occurence of a shock to the IGARCH volatility process will persist for

an infinite prediction horizon.”

The main contribution of the present paper is to introduce long-memory mean reverting
volatility processes in the continuous time Hull and White setting. This is particularly
attractive for option pricing and hedging through the so-cd#eah structure of BS implied
volatilities (see Heynen, Kemna, and Vorst 1994). More precisely, the long-memory feature
allows one to capture the well-documented evidence of persistence of the stochastic feature
of BS implied volatilities, when time to maturity increases. Since, according to (1.2), BS
implied volatilities are seen as an average of expected instantaneous volatilities in the same
way that long-term interest rates are seen as average of expected short rates, the type of
phenomenon we study here is analogous to the studies by Backus and Zin (1993) and Comte
and Renault (1996) who capture persistence of the stochastic feature of long-term interest
rates by using long-memory models of short-term interest rates.

Indeed, we are able to extend Hull and White option pricing to a continuous-time long-
memory model of stochastic volatility by replacing the Wiener proagssn (1.1) by
a fractional Brownian motiorwﬁ, with « restricted to 0< o < % (instead of|x| <
% allowed by the general definition because long memory occurs on that range only).
Note that the Wiener case correspondsrte= 0. Of course, for nonzera, w? is no
longer a semimartingale (see Rogers 1995), and thus usual stochastic integration theory
is not available. But, following Comte and Renault (1996), we only negtheory of
integration for Gaussian processes and we obtain option prices that, although they are
functions of the underlying volatility processes, do ensure the semimartingale property as a
maintained hypothesis for asset price processes (including optiditss semimartingale
property is all the more important for asset prices processes because stochastic processes
that are not semimartingales do not admit equivalent martingale measures. Indeed we know
from Delbaen and Schachermayer (1994) that an asset price process admits an equivalent
martingale measure if and only if the NFLVR (no free lunch with vanishing risk) condition
holds. As stressed by Rogers (1995), when this condition fails, “this does not of itself
imply the existence of arbitrage, though in any meaningful economic sense it is just as
bad as that.” In that event, Rogers (1995) provides a direct construction of arbitrage with
fractional Brownian motion. Aslong as the volatility itself is not a traded asset, all asset price
processes that we consider here (underlying asset and options written on it) are conformable

1We are very grateful to L. C. G. Rogers to have helped us, in a private communication, to check this point. The
semimartingale property of an option priCecomes from the fact that it is computed as a conditional expectation

of a (nonlinear) function oft o2(u) du. This integration reestablishes the semimartingale property that was lost
by the volatility process itself.
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to the NFLVR. Note that we have nevertheless the same usual problem as in all models of
that kind: the nonuniqueness of the neutral-risk equivalent measure.

The paper is organized as follows. We study in Section 2 the probabilistic properties of
our Fractional Stochastic Volatility (FSV) model in continuous time, obtained by replacing
the Wiener process? in (1.1) by the following process that may be seen as a truncated
version of the general fractional Brownian motfon

t o
2.8 (t—ys 2 1
w, (1) = A 71*(1—}—0() dw(s), O<a< >

We explain why a high degree of fractional differencingllows one to take into account the
apparent widespread finding of integrated volatility for high frequency data. Section 3 gives
the basis for more empirical studies of our FSV model through discrete time approximations.
We stress the advantages of continuous-time modeling of long memory with respect to the
usual ARFIMAaA la Geweke and Porter-Hudak (1983) or their FIGARCH analogue in the
ARCH literature. The main pointis that only a continuous-time definition of the parameters
of interest allows one to clearly disentangle long-memory parameters from short-memory
ones.

Section 4 is devoted to the issue of option pricing and the study of the properties and
features of implied volatilities. Since the first equation of (1.1) has remained invariant by
our long-memory generalization of the Hull and White (1987) option pricing model, their
argument can be extended in order to set an option pricing formula. The only change is
the law of motion of the instantaneous volatility, whose long-memory feature modifies the
orders of conditional heteroskedasticity (forecasted, temporally aggregatédnd of
kurtosis coefficients with respect to time to maturity. We derive some formulas about these
orders which extend those of Drost and Werker (1996) and thus “close the FIGARCH gap.”

The statistical inference issue is addressed in Section 5. Of course, if the instantaneous
volatility o (t) were observed, Comte and Renault’s (1996) work about the estimation of
continuous-time long-memory models could be used. But instantaneous volatilities are not
directly observed and can only be filtered, either by an extension to FIGARCH models of
Nelson and Foster’s (1994) methodology or by using option prices as Pastorello, Renault,
and Touzi (1993) do in the Hull and White context. Note thatfegt O the volatility process
is no longer Markovian, so this may make awkward the practical use of the Hull and White
option pricing formula. Nevertheless, it is shown how one could extend the Pastorello et
al. (1993) methodology to the present framework. The alternative methodology we suggest
in the present paper is to use approximate discretizations db(thestock price process
in order to obtain some proxies of instantaneous volatilities and work with approximate
likelihoods.

The discretizations found in Section 3 are used in Section 6 to perform some simulation
experiments about continuous-time FSV models. A descriptive study of the resulting paths
can then be obtained. The estimation procedures are compared through these Monte Carlo
experiments. The misspecification bias introduced by a FIGARCH approximation of our
continuous-time models is documented.

2This process is a tool for easy? definitions of integrals w.r.t. the Fractional Brownian Motion (FBM), but
can be replaced by the true FBﬂfoo((t —9)¥ — (—5)*)dw?(s) + wf,(t).
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2. THE FRACTIONAL STOCHASTIC VOLATILITY MODEL
2.1. A Simple Fractional Long-Memory Process

Comte and Renault (1996) used fractional processes to generalize the notion of Stochastic
Differential Equation (SDE) of ordep. We consider here only the first-order fractional
SDE:

1
(2.1) dx(t) = —kx(t)dt + odw, (1), X0 =0, k>0, O<a < >

The solution can be written (see Comte and Renault 1998jtas= fot e Kt=95 dy, (s).
Integration with respect ta,, is defined only in the Wiendr? sense and for the integration

of deterministic functions only. We thus obtain families of Gaussian processes. The process
X(t) also can be written aﬁ a(t — s) dw(s) with

_ g d X —ku o
(2.2) ax) = m&‘/o e “(x —w*du

o X
= — (er — keﬁkxf ek”u“ dLl) .
Fl+a) 0

We denote by(t) the “stationary version” ok(t), y(t) = ffoo a(t —s)dw(s). Therefore,
the solutionx of the fractional SDE is given by

(=9 W
(2.3) X(t) = A mdx (s),

where its derivative of order is the solution

d [f(t—s) b
@ 1y — _ k(t—s)
(2.4) X (t)_dt  Ti—w _/O e o dw(s)

of the associated standard SDE.
We can also give the general (continuous-time) spectral density of processes that are
solutions of (2.1):

o? 1

(2:5) o) = T(1+ a)2r2 22 + k2

Lastly, it seems interesting to note that long-memory fractional processes as considered in
Comte and Renault (1996) and solutions of (2.1) in particular have the following properties
proved in Comte (1996):

i. The covariance functiow = yy associated withx satisfies forh — 0 andy
constant:

1
(2.6) y(h) =y (0) + Syl 4 o(h* ).
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ii. xis ergodic in theL? sense:2 [ x(s)ds_"> 0.
T—+o00

ii. There is a process(t) equivalent to x(t) and such that the sample functionof
satisfies a Lipschitz condition of ordgr Vg8 € (0, o + %), a.s.

Thus the greater the value @f the smoother the path of the process.

2.2. Properties of the Volatility in the FSV Model

The basic idea of our modeling strategy (see (1.1)) is to assume that the logarithm
X(t) = Ina (t) of the stochastic volatility is a solution of the first-order SDE (2.1). For the
sake of simplicity, we assum= 0 since it does not change the probabilistic properties
of the process. Thus the volatility procesg) is asymptotically equivalent (in quadratic
mean) to the stationary process:

t
(2.7 o(t) = exp(/ e_k(t_s)ydwi(s)) , k>0, O<a< %

As in usual diffusion models of stochastic volatility, the volatility process is assumed to
be asymptotically stationary and nowhere differentiable. This is the reason we do not use
an SDE (even fractional) of higher order. Nevertheless, the fractional expemeatides

some degree of freedom in the order of regularity. Indeed, it is possible to shawtfor

the same type of regularity property as for the fractional progégs= Ino (t).

PROPOSITION2.1. Letr,(h) = cov(G(t + h),5(t)), whereg is given by (2.7). Then,
forh — 0, r, () =r,(0) + n.|h|2*1 + o(|h|**1), wherey is a given constant.

(See Appendix A for all proofs.)

Roughly speaking, the autocorrelation function of the stationary precdsfills the
regularity condition that ensures the Lipschitz feature of the sample paths. The greater
is, the smoother the path of the volatility process is. Therefore, a high degree of fractional
differencinga allows one to take into account the apparent widespread finding of integrated
volatility for high frequency data (see the simulation in Section 6.2). As a matter of fact,
we can see that

My (h) - I’(,(O)

«a>0= ——— - >0,
h h—0

which could be interpreted as a near-integrated behavior

() -1, (0 _p"—1
h = h o

if o(t) is considered as a continuous-time AR(1) process with a correlation coefficient
near 1.

3Two processes are called equivalent if they coincide almost surely.
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This analogy between a unit root hypothesis and its fractional alternatives has already
been used for unit root tests by Robinson (1993). Robinson’s methodology could be a useful
tool for testing integrated volatility against long memory in stochastic volatility behavior.

The concept of persistence that we advance thanks to the fractional framework is that
of long memory instead of indefinite persistence of shocks as in the IGARCH framework.
Indeed, we can prove the following result:

PROPOSITION2.2. In the context of Proposition 2.1, we have

(i) r,(h)is of order O(h|*~1) for h — +oo. |
(i) lim, 022 f, (1) = c € RY,where £ (1) = [, 1, (h)é*" dhisthe spectral density
ofc.

Proposition 2.2 illustrates that the volatility process itself (and not only its logarithm) does
entail the long-memory properties (generally summarized as in (i) and (ii) by the behavior
of the covariance function near infinity and of the spectral density near zero) we could
expect in the FSV model.

3. DISCRETE APPROXIMATIONS OF THE FSV MODEL
3.1. The Volatility Process

The volatility process dynamics are characterized by the factdtiat= Ino(t) is a
solution of the fractional SDE (2.1). So we know two integral expressiongfr(with
the notations of Section 2.1):

_ t (t _ s)a @ B t )
X(t) = A m dx'“(s) _/O a(t —s) dw-(s),

wherea(t — s) is given by (2.2).

A discrete time approximation of the volatility process is a formula to numerically eval-
uate these integrals using only the values of the involved proce&8¢s) andw?(s) on
a discrete partition of [&]: j/n, j = 0,1,...,[nt].* A natural way to obtain such
approximations (see Comte 1996) is to approximate the integrands by step functions:

! (t - lnTSl)a (@) ‘ [ns] 2
(31) Xn’l(t) :/é m dx (S) and anz(t) :A a(t — T) dw (S),

which gives, neglecting the last terms for large values,of

(3.2) =3 (-'7)

V) axe (L) and
= rl+w) n

4[Z] is the integetk such thak < z < k + 1.
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where we use the following notationax® (1) = x® (1) — x(“)(‘T‘l) and Aw?() =
201y _ 2ci=t
we() — wo ().
Indeed, all these approximations converge towara fprocess in distribution in the sense
of convergence in distribution for stochastic processes as defined in Billingsley (1968); this

convergence is denoted b@. This result is proved in Comte (1996).

D D ~ D ~ D
PROPOSITION3.1. Xn1 = X, Xn2 = X, Xn = X, and X, = X when n goes to
infinity.

The proxyX, is the most useful for comparing our FSV model with the standard discrete
time models of conditional heteroskedasticity, whereas the most tractable for mathematical
work is X;,.

3.2. FSV versus FIGARCH

Expression (3.2) provides a proXy of x in function of the procesx(o‘)(%), i

0,1,...,[nt], whichis an AR(1) process associated with an innovation praﬁ%Ss j=
0,1,...,[nt]. Letus denote by

_ (@) l — l
(3.3) (1 — pnLn)x (n)—u<n)

the representation of this process, whiegés the lag operator corresponding to the sampling
schemel, j =0,1,..., LaY(}) = (‘ 1y, andp, = e%/" is the correlation coefficient
for the time interval%.

Since the process® is asymptotically stationary, we can assume without loss of gen-
erality that its initial value is zerox“’)(%) = 0 for j < 0, which of course implies
u(%) =0 for j <0. Thenwe can write

() - B T () ()
n —~ nT'(1+a) n n
_ = 1(|—|—l)"‘—|"‘ L |y (l)
— ne nerl+a) Lo n/’

M

Thus,
i [ drye—ie (]
(3.4) Xn(ﬁ) = |:IZ=(:) m'—n} (1—-pnln)"u (ﬁ) )

Expression (3.4) gives a parameterization of the volatility dynamics in two parts: a long-
memory part that corresponds to theﬂ@f* 0 & Ln/n"‘ witha = ((i+1)*—i%)/T'(1+a)
and a short-memory part that is characterized by the AR(1) pro(:bssann)—lu(%).

We can show that the long-memory filter is “long-term equivalent” to the usual discrete
time long-memory filtel — L)~ = ,+:°g b L', whereb; = I'(i + a)/(T'(i + DI'(@)),
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in the sense that there is a long-term relationship (a cointegration relation) between the
two types of processes. Indeed, we can show (see Comte 1996) that the two long-memory
processesy; = Zﬁgg gjUi_j andZ; = zr:g b u;_i, whereg; andb; are defined previously
andu, is any short-term memory stationary process, are cointegrafee: Z; is short
memory andd ;"% la; — bi| < +oo, whereas [ "F a = 375 by = +o0.

But this long-term equivalence between our long-memory filter and the usual discrete
time one(1 — L)~* does not imply that the standard parameterization ARFH{M4A, 0)
is well-suited in our framework. Indeed, short-memory characteristics may be hidden
by the short-term difference between the two filters. In other words, not only
(1 — paLn)(N(1 — Lp))*Ka(3) is notin general a white noiSeyut we are not even sure that

(n(1 — Lp))*Xn (% is an AR(1) process (even though we know that it is a short-memory

stationary process). The usual discrete time filter L)* introduces some mixing between
long- and short-term characteristics (see Comte 1996 and Section 6.3 for illustration).

This is the first reason why we believe that the FSV model is more relevant for high-
frequency data than the FIGARCH model since the latter is based on an ARFIMA modeling
of the squared innovations (see Baillie etal. 1996). The second reason is thatthe FSV model
represents the log-volatility as an “AR(1) long-memory” process with a specific risk (in the
particular case = 0, (3.4) corresponds to the stochastic variance model of Harvey, Ruiz,
and Shephard 1994), but the GARCH type modeling does not introduce an exogenous risk
of volatility and, by the way, does not explain why option markets are useful to hedge a
specific risk.

3.3. The Global Filtering Model

In order to obtain a complete discrete time approximation of our FSV model, we have
to discretize not only the volatility process, but also the associated asset price [B@gess
according to (1.1). Since itis not difficult to compute some discretizations of the trend part
ofan SDE, we can assume in this subsection, for the sake of notational simplicity, &t In
is a martingale. Not only are we always able to perform a preliminary centering of the price
process in order to be in this case, but also it is well known that the martingale hypothesis
is often directly accepted, for exchange rates for example. SoYwtth= In S(t) we are
interested in the following dynamics:

(3.5) dY () = o (t)dwl(t)
: d(no(t)) = —kIno (t)dt + ydw?(t).

For a known process, a discretized approximatiovl, of the proces¥’ can directly be
obtained by a way similar to (3.1):

/Ot o (@) dwl(s)
Yo () awt (1) v () (s ().

5The fractional differencing operatgf. — L)* has to be modified inton(1 — Lp))® in order to correctly
normalize the unit root with respect to the unit period of time.

Yo(D)
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And by aremark of the same type as (3.2), we can also conéider=Y"\" o (1=5) Awl(1).
It can be proved that:

LEMMA 3.1. Y, 2y andY, 2 Y, when n grows to infinity.

But from a practical viewpoint, the discretizatiovisandY, are not very useful because
they are based on the values of the proeesshich cannot be computed without some other
errors of discretization. Thus we are more interested in the following joint discretization:

- 3 i1\, o]
(3.6) Sn(t) = exp j;a (t - T) Aw (ﬁ) ,
[nt] P ;
Ya) =) 64 (J—1> Aw?! (l> .
~ n n

We can then prove the following proposition.

PROPOSITIONS.2.

(Y”>:D><Y> and thus (S‘ZNInY”)g(S> when n— oo.
On g On o

Another parameterization can be obtained by usipff) = exp(Xn(t)) rather than
on(t) = exp(Xn(t)); the previous section has shown how this parameterization is given
by a andpp.

We have something like a discrete time stochastic variance radaélarvey et al. (1994)
which converges toward our FSV model when the sampling intq"{\mjnverges toward
zero. The only difference is that, when 0, Ing,,(t) is not an AR(1) process but a long-
memory stationary process. Such a generalization has in fact been considered in discrete
time by Harvey (1993) in arecent working paper. He works with- oe, ¢ ~ 11D (0, 1),
t=1..T,02=0c%exph), 1—- L) =n,n ~11D(0,03,0=<d <1 The
analogy with (3.6) is then obvious, with the remaining problem being the choice of the right
approximation of the fractional derivation studied in the previous subsection. Moreover,
our case is a little different from the one studied by Harvey in that we have in mind a
volatility process of the type ARFIMAL, «, 0) where he has an ARFIM@®, d, 0). But
such discrete time models may be also useful for statistical inference.

4. OPTION PRICING AND IMPLIED VOLATILITIES
4.1. Option Pricing

The maintained assumption of our option pricing model is characterized by the price
model (1.2), whergw?(t), w?(t)) is a standard Brownian motion. L&R2,F,P) be
the fundamental probability spacé.F:)ico,1] denotes théP-augmentation of the filtra-
tion generated byw?!(r), w?(r)), r < t. It coincides with the filtration generated by
(S(v), o (7)), T <tor(S(r), X® (1)), r <t,withx(t) =Ino().

We look here for the call option premiu;, which is the price at tim¢ < T of a
European call option on the financial asset of pi&att, with strike K and maturing at



LONG MEMORY IN CONTINUOUS TIME STOCHASTIC VOLATILITY MODELS 301

time T. The asset is assumed not to pay dividends, and there are no transaction costs.

Let us assume that the instantaneous interest rate at tingg), is deterministic, so that
the price at time of a zero coupon bond of maturifly is B(t, T) = exp(— ftT r(u)du).

We know from Harrison and Kreps (1981) that the no free lunch assumption is equivalent
to the existence of a probability distributiGhon (2, F), equivalent tdP, under which the
discountedrice processeare martingales. We emphasize that no change of probability of
the Girsanov type could have transformed the volatility process into a martingale, but there
is no such problem for the price proceSg). This stresses the interest of such models
where the nonstandard fractional properties are set(bnand not directly orS(t). This
avoids any of the possible problems of stochastic integration with respect to a fractional
process, which does not admit any standard decomposition. Indeedptioeess appears
only as a predictible and everf continuous integrand.

Then we can use the standard arguments. An equivalent méésioharacterized by a
continuous version of the density proces€oWith respect tdP (see Karatzas and Shreve
1991, p. 184):

t t
M(t) = exp(—/O A(U)'dW(u) — %/0 A(u)’k(u)du),

whereW = (w!, w?) andx = (A1, 1») is adapted tqF;} and satisfies the integrability
condition]oT A(UW)'A(u)du < oo a.s. The processes and i, can be considered as risk
premia relative to the two sources of rigk andw?. Moreover, the martingale property
underQ of the discounted asset prices implies that(t)o (t) = w(t, S(t)) — r(t).

As the market is incomplete, as is usual in such a context (two sources of risk and only
one risky asset traded), there is no such relation fixing the volatility risk premjuand,
indeed, the martingale probabili€) is not unique.

We need to restrict the set of equivalent martingale probabilities by assuming that the
processi,(t) is a deterministic function, of the two argumentsando (t):

(A) A(t) =Ao(t,o(t),  Vtel[0,TI,

which is a common assumption.
Girsanov’s theorem leads to a characterization of the distribution @aéithe under-
lying asset. Let:

t t
&Hn=wm+/xﬂmw md@%ﬁwﬂﬁﬁ/hwmu
0 0

Then(w?!, w?) = W’ is a two-dimensional standa@+-Wiener process adapted {&;}. In
particular,iv? andw, are independent undér by construction. Moreover is the solution

to an equation depending only @i that can be rewritten as a stochastic differential equation
in w? (depending also ohy). Thus the processes' ando are still independent undeé.
With Q defined as previously, the call option price is given by

(4.1) C; = B(t, T)E®[Max(0, S — K) | A,
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whereEQ(. | F) is the conditional expectation operator, givBnwhen the price dynamics

is governed by). Sincew! ando are independent und€, theQ distribution of ISy /S)
givenbydIn § = (r (t) — (o (t)2/2)dt+o (t)dw(t) conditionally on botl#; and the whole
volatility path (o (t))te[o, 77 is Gaussian with meaﬁT r(udu— % ftT o (u)2du and variance

ftT o(u)2du. Therefore, computing the expectation (4.1) conditionally on the volatility
path gives:

— Q ﬁ ﬁ M Q ﬁ_ﬁ
62 c=so et [o (gl )] -ene[o (g -5 ]}

wherem; = In (%) Uyt = ,/ftT o(u)2du, andd(u) = J% [U e t2dt.

The dynamics of are now given by

o _

( t t (t _ S)ot >
= —k/lnaw)du—y —————Aﬂ&d%—%w%ax
a(0) 0 0

Frd+a)

where

~ t (t —S)a ~
2 2
w, (1) = /o 71_‘( ) dw<(s).

Then differentiatingc(t) = In o (t) with fractional ordekx gives:
(4.3) dx@(t) = (—kx®(t) + yrz(t))dt + ydw?(t),

where

d [ft—9
(@) _
X (t)_dt/0 F(1_Oé)x(s) ds

is the derivative of (fractional) order of x.
We can give the general solution of (4.3):

t t
X@(t) = (c—l—/ yeksxz(s)ds+/ yeksdﬁ;z(s)> gkt
0 0

and deduce by fractional integration.

As usual, when one wants to perform statistical inference using arbitrage pricing models,
two approaches can be imagined: either specify a given parametric form of the risk premium
or assume that the associated risk is not compensated. When trading of volatility is observed
it might be relevant to assume a risk premium on it. But we choose here, for the sake of
simplicity (see, e.g., Engle and Mustafa 1992 or Pastorello et al. 1993 for similar strategies
in short-memory settings) to assume that the volatility risk is not compensated, i.e., that
A2 = 0. Under this simplifying assumption, which has some microeconomics foundations
(see Pham and Touzi 1996), the probability distributiongof are the same und@&and
underQ. In other words the expectation operator in the option pricing formula (4.2) can be
considered with respect &
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4.2. Implied Volatilities

Practitioners are used to computing the so-called Black—Scholes implicit volatility by
inversion of the Black—Scholes option pricing formula on the observed option prices. If
we assume that these option prices are given by (4.2) and that the volatility risk is not
compensated, the Black—Scholes implicit volatility appears to be a forecast of the average
volatility oyt on the lifetime of the optioo?; = (T —t)~*UZ;). If we consider the proxy
ofthe option price (4.2) deduced from afirst-order Taylor expansion (ar@uat) ~*EU?;)
of the Black—Scholes formula considered as a function®f the Black—Scholes implicit
volatility dynamics would be directly related to the dynamics of

.
Ui%np,T(t) = T—lt/ E (o?(u) | 7)du.
- t

To describe the dynamics of this “implicit volatility” we start by analyzing the conditional
laws and moments of:

t h
E(a(t+h)|]—"t)=exp<g(t+h)+/ a(t+h—s)dw2(s)+%/ az(x)dx)
0 0

for x(t) = Ino(t) = g(t) + /g a(t —s)dw?(s), g(t) = x(0) + (1 — e kHp, anda(x) as
usual. Or, if we work with the stationary version®f

t

h
]E(a(t+h)|]—"t):exp</ a(t+h—s)dw(2)(s)+%f az(x)dx>.
0

—00
To have an idea of the behavior of the implicit volatility, we can prove:

PrOPOSITION4.1. Yy = E(c?(t + 1) | /) is a long-memory process in the sense that
COV (W, Yern) is of order Q(|h|?*~1) for h — 400 anda €]0, 1/2].

Var(E(o (t + h) | 7)) is of order Q(|h|*~Y) for h — 400 if « €]0, 1/2[ and of order
e khlijf ¢ = 0.

Proposition 4.1 shows that, thanks to the long-memory property of the instantaneous volatil-
ity process, the stochastic feature of forecasted volatility does not vanish at the very high
exponential rate but at the lower hyperbolic rate. This rate of convergence explains the
stochastic feature of implicit volatilities, even for fairly long maturity options.

SinceT > t, we can sefl =t + t. We taker = 1 for simplicity and study the long-
memory properties of the stationary (if we work with the stationary versian) gfrocess
which is now defined by

1
o) = /0 E (0%t +u) | ) du.

PROPOSITION4.2. Z = oifnp(t) is along-memory process in the sense tteat z;, z )
is of order Q(|h|>*~1) for h — 400 anda €10, 1/2].
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We have already documented (see Section 6.5) some empirical evidence to confirm the
theoretical result of Proposition 4.2. Indeed, when we use daily data on CAC40 and option
prices on CAC40 (of the Paris Stock Exchange) and we try to estimate a long-memory
parameter by regression on the log-periodogram (see Robinson 1996), we find that the
stock price procesSis a short-memory process and the B.S. implicit volatility process is
a long-memory one.

Finally, the dynamics of conditional heteroskedasticity of the stock price pr&eass
be described through the marginal kurtosis. We are not only able to prove a convergence
property like Corollary 3.2 of Drost and Werker (1996) but also to measure the effect of the
long-memory parameter on the speed of convergence:

PROPOSITION4.3. Letg(h) = E|Y(h) —EY(h)|* = EZ(h)* denote the fourth centered
moment of the rate of return(¥) = In % on [0, h], with Z(t) = f(; o (u) dwl(u). Then
¢(h)/h? is bounded orR.

Moreover, letkur (h) = ¢(h)/(V arY(h))? denote the kurtosis coefficient oft¥. Then

E(o%)

I‘l]i£>n0 kurty(h) = 3@

1
3, f 0, -
-3 o [o]

at rate l?**1 (continuity ina = 0),6 and limp_, ;o kurty (h) = 3fora < [0, i at rate
h2-1if o €10, 3[,” and at rate e®/2M if ¢ = 0.

The discontinuity in 0 of the speed of convergence oflim,, kurty (h) with respect te
is additional evidence of the persistence in volatility introduced byitharameter. When
there is long memoryx > 0) the leptokurtic feature due to conditional heteroskedasticity
vanishes with temporal aggregation at a slow hyperbolic rate, while with a usual short-
memory volatility process it vanishes at an exponential rate.

Note that the limit foth going to 0 ofkurty (h) is close to 3 (and thus the log-retuyns
close to Gaussian) if and only if Var? is close to 0, that is, if is close to deterministic
(small value of the diffusion coefficiemt); this leads us back to the standard Black—Scholes
world.

5. STATISTICAL INFERENCE IN THE FSV MODEL
5.1. Statistical Inference from Stock Prices

Several methods are provided in Comte and Renault (1996) and Comte (1996) to estimate
the parameters of an “Ornstein—Uhlenbeck long-memory” process, which here is the set
of parametersw, Kk, 6, y) implied by the first-order equation fulfilled by the log-volatility
process. Those methods of course are all based on a discrete time sample of observations
of one path of Ir. Such a path is not available here.

The idea then is to find approximations of the path deduced from the obs8¢ed
and to replace the true observations usually used by their approximations in the estimation
procedure. Let us recall briefly that those procedures are as follows:

5That is,kurty (h) — 3[[E(c%)/(E(c2))?3] is of orderh®+1 for h — 0.
"That is,kurty (h) — 3 is of ordeth?~1 for h — +o0.
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e either we finda by log-periodogram regression using the semiparametric results
of Robinson (1996) andk, 6, y) by estimating an AR(1) process after fractional
differentiation at the estimated order,

e orall parameters are estimated by minimizing the Whittle-type criterium approximat-
ing the likelihood in the frequency domain, as studied by Fox and Taqqu (1986) and
Dahlhaus (1989).

The natural idea for apprOX|mat|ra:g|s then based on the quadratic covariatiol ¢f) =
In(S(t)). Indeed(Y); = fo o?(s)ydsand, if{ty, ..., tn} is a partition of [Qt] andty = O,
then

lim Z(Ytk Y, ,)? = (Y) in probability, where step= Max {|t; — ti_1|}.
step—~0 1<i<m

Thenag(Y); — (Y)_n)/h h—g o2(t) a.s. and provided that high-frequency data are avail-

able, we can think of cumulating the two limits by considering a partition of the partition
to obtain estimates of the derivative of the quadratic variation.

Let [0, T] be the interval of observation, lét = kT/N, N = np, be the dates of
observations, and lef,, k = 0O, ..., N, be the sample of observations of the log-prices.

Then we haven blocks of Iengthp and we set:(Y), ) = YINW/T= iy, _y, 1250

that ((Y )(N) (Y )t_h)/h is computed from the underlying blocks with= T/n. In other
words,

n n
Gip® == > (=Y’

k= ]-p+1
becausé¢((t — (T/n)N)/T] =[tN/T — p]. Then we have:

PrROPOSITIONS.1. LetY(t) = fé o (s) dwl(s) ando (t) = & (t) with given by formula
(2.7). Therve > 0,

lim sup p'~°E (67 ,(t) —o-z(t))2 =
;:H;te[o T]

Thus p must be as large as possible for the rate of convergence to be optimal. On the
other hand we are interested in large siaad the sample of deduced volatilities. This is
the reason there is a trade-off betweesnd p, taking into account the constraiNt = np.
A possible choice could be to choasand p of order+/N.

Then we have to estimate, supposed to be a constant, and we notice that the finite
variation terms that have been omittedvirare known to have no weight in the quadratic
covariation. The estimate @f can be chosen here as usual (see Renault and Touzi 1996):

fnpAt _ 1 np S _ T _ kT np1 np S-S,
einpAl — np 2k=1 §, At = np’tk , or sometlmes#np Tnplok=l"§_, °

which completes the estimation procedure
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5.2. Statistical Inference from Option Prices

Another way to estimate the volatility parameters could be the use of the informational
content of option prices and associated implied volatilities in the spirit of Engle and Mustafa
(1992) or Pastorello et al. (1993) (assuming that the volatility risk is not compensated).
Unfortunately, the non-Markovian feature of the long-memory process implies that the Hull
and White option pricing formula is not so simple to invert to recover latent instantaneous
volatilities asinthe usual case. Nevertheless, if sufficiently high frequency data are available
to approximate integrals by finite sums, we are able to generalize the Pastorello et al. (1993)
procedure thanks to afirst-stage estimate of the long-memaory param@tsee this point,
let us assume for instance that we observe at times= 0, 1, .. ., n, option pricesC;, for
options of exercise dates+ A (for a fixed A), that are at the money in the generalized
sense:§, = K B(ti, ti + A), whereK; is the exercise price of an option traded at date
In this case, we know from (4.2) that:

(5.1) C, =S <2Eﬂ’ (cp (U”TM» - 1|7, > .

The information setF; in the above expectation is defined as the sigma-field generated
by (wi(r),o (), < t;). But since the two processes' andos are independent and
Uy, 1+ is depending o only, the information provided by?(z), t <t is irrelevant in
the expectation (5.1). Moreover, thanks to (2.4) and (2.3), we know that the sigma-field
generated bx(t) = Ino(7), T < tj, coincides with the sigma-field generated by the short-
memory procesg® (t), T < t;. On the other hand, thanks to (2.8), A appears like a
complicated function (see Appendix B) ®f (1), 7 < t; + A.

In other words, (5.1) gives the option price as a function of:

first, the past values® (z), T < t;, which define the deterministic part of  , A,
second, the Ornstein—Uhlenbeck parametkrs, y), which characterize the condi-
tional probability distribution ok® (7), T > t;, given the available informatiof;
summarized byx©® (t;),

e third, the long-memory parameter which defines the functional relationship be-
tweenU; 1 4 o and the process®.

The Black—Scholes implicit volatilityiﬁg(ti) is by definition related to the option price
C;, in a one-to-one fashion by

BSt.
(5.2) C, =5 [2c1> <w> - 1} .

The comparison of (5.1) and (5.2) shows that the dynami@ﬁﬁtti) are determined not

only by the dynamics of the Ornstein—Uhlenbeck proceé¥sbut also by the complicated
functional relationship betwedd; 1, and the past values of®. This is why the BS
implicit volatility is itself a long-memory process whose dynamics cannot analytically be
related to the dynamics of the instantaneous latent volatility. Nevertheless, the relationship
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betweerlJ;, . » andx® can be approximated by (see Appendix B):

t+A
(5.3)UZ 4a _/ti exp(ZZF(l A(x(“)(t)))x exp(f (x@ (t); Z(u, t, @)) du,

T<tj

where f is a deterministic function and(u, ti, ) is a process independent 5f .

Thanks to Proposition 4.2, we can estimat@ a first step by a log-periodogram regres-
sion on the implicit volatilities. In a second stage, we shall assumetisdnown (the lack
of accuracy due to estimatedwill not be considered here) and we propose the following
scheme for an indirect inference procedure, in the spirit of Pastorello et al. (1993):

. . ~ 14 ~\ (a 2
P simulation of X(O‘>(t; 0) Ct(Q) BS‘+_)f|Iter (In G)i(m)p(e) ,3(9)

- 1, ~

Ct BSt+a-filter (|I”I0’)i(,l;)p ,3

The meaning of this scheme is the following: for a given valu the parameters of the
Ornstein—Uhlenbeck proces&”, we are able to simulate a sample patt(t; 6); then
thanks to (5.3) and (5.1), we can get simulated vafij€8) conformable to the Hull-White
pricing. Of course, this procedure is computer intensive since the expectation (5.1) itself has
to be computed by Monte Carlo simulations. Nevertheless, as soon as optionGaites

are available, the associated Black—Scholes implicit volatilitigg6) are easy to compute,

and finally, through the fractional differential operator, we obtain a prodess,p) * (t; 0)

whose dynamics should mimic the dynamics of the Ornstein—Uhlenbeck prdéess

This proxy of the instantaneous volatility dynamics provides the basis of our indirect
inference procedure. More precisefi(9) (respectively) denotes the pseudomaximum
likelihood estimator of the parameters of the simulated prodessmy)® (t; 6) (respec-
tively, the observed procesi oimp)("‘) (t)) when the pseudolikelihood is defined by an
Ornstein—Uhlenbeck modeling of these processes.

The basic idea of the indirect inference procedure is to compute a consistent estimator
of the structural parametefisby solving in6 the equationg(9) = B.

It is clear that the consistency proof of Gourieroux, Monfort, and Renault (1993) can
be easily extended to this setting thanks to the ergodicity property of the processes; on the
other hand, the asymptotic probability distributions have to be reconsidered to take into
account the long-memory features.

6. SIMULATION AND EXPERIMENTS
6.1. Simulation of the Path of a Fractional Stochastic Volatility Price

First, we illustrate in Figure 6.1 the general behavior of the sample path-efin S
generated by small step discretizatibri= 1/n) = 0.02 andu = 6 = 0, (a,k, y) =
(0.3, 1, 0.01). We can see that we obtain paths that are very similar to what is observed for
exchange rates. Compare this for instance with the graph given by Baillie et al. (1996) for
DM-US dollar exchange rate. In both cases, there seems to be a “long memory” of the
main pick that seems to appear again after its occurrence, even if attenuated.
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FIGURE6.1. Simulated path of log-stock price in the long-memory FSV mdde} 1000,
h =0.02,(«a, k, y) = (0.3,1,0.02).

6.2. An Apparent Unit Root

Another comparison can be made with Balillie et al.’s (1996) work. Indeed, they argue
that their discrete time fractional model gives another representation of persistence that can
remain stationary, contrary to usual unit roots models.

Here, we want to show that our model may exhibit an apparent unit root if a wrong
parameterization is assumed for estimation. For that purpose, we look at what is obtained
if the model is estimated as if it were a GARCH(1,1) process:

g =InSg = oz, Ei_1zz =0, Var_1zz =1
O’tz =w+ astz_l + batz_l.

In other wordsg(1 — @L)Stz =w+ (1 —bL)v, wherep = a+ b andv is a white noise.

We estimate the parameter, ¢, b) throughminimizind 4, 1, ..., 1) = ZtT:l(ln o2+
e20,2). The results are reported in Table 6.1 and Figure 6.2. One hundred forty samples
have been generated, starting with 5000 points (with alsteg 0.1) and with one point
out of ten (i.e., 500 points), kept for the estimation procedure with alstep 1 and
(o, k, ) = (0.3,2,1). We find also an apparent unit root fpr and the empirical dis-
tribution of ¢ clearly appears to be centered at 1. We can seegthsthe more stable
of the estimated coefficients and is always very near 1. Other tries have been made with
other parameters for the continuous time model with the same kinds of results. Thus,
continuous-time fractional models are good representations of apparent persistence.
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TABLE 6.1
An Apparent Unit Root forp. A GARCH(1,1) Is Estimated Instead of the True FSV
Simulated. 140 Samples Generated

Empirical mean| Empirical std. dev.
) 1.5843 1.3145
@ 1.0453 0.1109
b —0.1935 0.3821

0 |-

<+ |-

W

FIGURE 6.2. Empirical distribution ofp when the FSV model is estimated as a GARCH
(1,1) processt = 01z, 0 = w + aeZ | + bw? , ¢ = a+ b; 140 samples generated.

6.3. Comparison of the Filters

Now we give an illustration of the quality of the continuous-time filter definedby
((il + ¥ —i%) (see Section 3.2) as compared with the usual discrete tim€lond. ).

We generatedN observations at stefph = 0.01 of the AR(1) procesz® as given in
formula (3.3) with(e, k, y) = (0.3, 3, 1), which gave arN-sample ofx as given by (3.2).
Then we keph = N/10 observations of the true AR(I¥*, and of thex process. We
applied the continuous-time filter at stap= 10hh = 0.1 to then-samplex, which gave
observations of a proceszé“); we applied the discrete time filter at step= 10hh to the
samen-samplex, which gave observations of a proceé‘é). The paths ok®, xi“), and
xé“) can be compared. It appears that the continuous-time filter is better than the discrete
time one.

We generated 100 such samplex 6f, xi"’), andxg") and computed.* andL? distances
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TABLE 6.2
L* andL? Distances between the Original Paths and the Filtered Paths with the Two
Filters. Filter 1 Is the Continuous-Time Filter, Filter 2 the Discrete Time One

( (@) ( (@)
X@ x| x@, xs

do: | 0.1048 | 0.2135
d.2 | 0.1359 | 0.3607

betweerx@ andx®, i = 1, 2; that is,

o 1g e
dis (X, () = =3 X)) =X (),
j=1

0y _ LR @iy @iz
dia (X, ) = = 3 () =XV i =12
j=1

The results are reported in Table 6.2. Even if the numbers do not have any meaning in
themselves, the comparison leads clearly to the conclusion that the first filter is significantly
better. For a convincing comparison of the twelve first partial autocorrelations of the three
samples, see Comte (1996).

6.4. Estimation ofr by Log-Periodogram Regression in Three Models

Lastly, we compared the estimationsxodbtained by regression of IA) on InA, where
I (1) is the periodogram (see Geweke and Porter-Hudak 1983 for the idea, Robinson 1996
for the proof of the convergence and asymptotic normality of the estimator, and Comte 1996
to check the assumptions given by Robinson).

We used 100 samples with length 400, where 4000 points were generated for the
continuous-time models with a steplOand one point out of ten was kept for the esti-
mation. We hade, k, ) = (0.3, 3, 1), in particulare = 0.3 in all cases.

But we compared two ways of estimating either working directly on the log-period-
ogram of the process(t) = Ino (t) (which exactly corresponds to our fractional Ornstein—
Uhlenbeck model) or working om(t) = exp(x(t)), since it fulfills the same long-memory
properties (see Proposition 2.2).

As a benchmark for this estimation @f we considered a third estimation through the
following procedure. Assuming that the observed path would be associated (ith-
(1—L)~*x@(t) (with a sampling frequendy = 1) instead ok(t), we could then estimate
a by a log-periodogram regression on the p#th), which is referred to below as the
ARFIMA method. The three methods should provide consistent estimators of the same
value fora. The results are reported in Table 6.3: they are better withan with an
ARFIMA model or with expx, and the recommendation is to work witlinstead of exyx.

Let us nevertheless notice that the bad result for the ARFIMA model could be explained by
the fact that the discrete time filtét — L)~ had been applied to the low frequency path
x@ (1) with steph = 1.
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TABLE 6.3
Estimation ofe with Log-Periodogram Regression for Three Models. 100 Samples,
Length 400. True Valuex = 0.3

Empirical mean| Empirical std. dev.
X 0.2877 0.0629
expx 0.2568 0.0823
ARFIMA 0.3447 0.0864

6.5. Estimation with Real Data

We carried out log-periodogram regressions on real stock prices and implicit volatilities
associated with options on CAC40 of the Paris Stock Exchange. First, for the log-prices,
we found from our 775 daily data thagsice = 0.0035. This is neagx = 0 and confirms
the short-memory feature of prices. On the contrary, we found for a sequgnge- oy |
that ayolat = 0.2505 which illustrates the long-memory feature of the volatilities. We
emphasize that we have to take absolute values of the increments of the implicit volatilities
(see Ding, Granger, and Engle 1993), since we otherwise have:

In(ot41/0t1) 0141 — ot ot (0t41 — 01)?
o —0.30493 —-0.37589 0.67034 0.21490

so that squaring is also possible. Missing values are replaced by the global mean.

Two preliminary conclusions can be derived from the previous empirical evidence. First,
it appears that the volatility is not stationary and must be differenced. Secondly, the long-
memory phenomenom is stronger when we consider absolute values (or squared values) of
the differenced volatility. This seems to indicate some asymmetric feature in the volatility
dynamics, as observed in asset prices by Ding et al. (1993).

These two points lead us to modify our long-memory diffusion equatios@n This
work is still in progress. Nevertheless, the previous empirical evidence has to be interpreted
cautiously, because if we take into account small sample biases, it is clear that an autore-
gressive operatail — pL) with p close to one is empirically difficult to identify against a
fractional differentiation(1 — L)*.

APPENDIX A: PROOFS

Proof of Proposition 2.1 We are going to use the result given in equation (2.6) (see Comte
1996) which gives fok = In(5) andh — 0: rgz(h) = rz(0) +v.|h|2*1 4+ o(|h|%**1) with,
forh > 0:

+00 [e%s)
VXt +h) — X)) =20x0) —rg(h) =2 (/ a’(x)dx — / ax)a(x + h) dx) ,
0 0
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and the fact that ifX ~ A(0, s?) thenE(expX) = €72. Then, still forh > 0 (and
ra(_h) = ra(h)):

Iy (h) = E(expX(t + h) x expX(t)) — E(expX(t + h)) x E(expX(t))

t
r.(hy = E <exp</ (@at+h—s)+a(—s)) dwz(s))

t+h
y exp(/ at +h—s)dw2(s>>)
tt+h t
—-E (exp(f att+h—s) dw2(5)>) x E <exp<f at —s) dw2(3)>>

This yields, forh > 0, with the second point, to

+00 +o0
ro(h) = exp(/ a?(x) dx) <exp(/ a(x + hya(x) dx) — 1) .
0 0

Then, forh > 0:

+o00
rs(h) —r,(0) = exp( / az(x)dx)
0

+o0 oo
X <exp</ a(x + h)a(x) dx) — exp(f a’(x) dx)) ,
0 0

and factorizing the first right-hand term again:
+00
re(h) —14(0) = eXp<2 / a(x) dX) (exp(rx(h) —rz(0) —1).
0

Then forh — 0, K = exp(/,"™ a?(x) dx), we have:
re(h) —1,(0) = K2 (exp(y.|n|** + o(|h|***t1)) — 1) = K?y|h|* + o(|h|***)

which gives the announced result. O

Proof of Proposition 2.2 (i) The previous computations give, with the satdeas
above:r, (h) = K (exp(rz(h)) — 1) and it has been proved in Comte (1996) thah) =
wlh|?~1 4 o(lh|2*~1) for h — 400, whereu is a constant. This implies straightforwardly
thatr,, (h) = K u|h|2~1 4 o(|h|**~1), which gives (i). O
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(i) f0+°° ro(h)cogrh)ydh = fOA rs(h) cogah)ydh + % ;;f" rs(5)cosudu. Now for
A chosen great enough, the developmentrgf near +oo implies 1% f, (1) =
22 fOA r,(h) cogah)d h+f;;°° u?~! cosudu+o0(1), and consequently lim, o 1% f, (1) =

0+°° u®~1cosuduwhere the integral is convergent near 0 because D and near-co
because;f, ™ u*~ cosudu = [u**~Lsinu]{™ — (2« — 1) [;"* u*~2sin uduwhere all
terms are obviously finite. O

Proof of Lemma 3.1 For the proof of the first convergenc¥; ZvYona compact set
[0, T], we check the_? pointwise convergence of,(t) towardY (t), and then a tightness
criterion as given by Billingsley (1968, Th. 12.3J] Y, (t2) — Yn(t1)|P < C.|tz — t1|9 with
p > 0,9 > 1, andC a constant.

The L2 convergence is ensured by computing:

FORD — YO = B (/ot (6 (@) - ‘7(5)) Olwl(s))2
E (/Ot (G (@) - G(S)>2ds)
/Ot . (" (@) - U(S))st with Fubini

Then thel.? convergence is obviously given by an inequali(o () — oct))2<Cltp—
t1]” for a positivey and a constartt.
As usual, letx(t) = fé a(t — s)dw?(s) and lett; < t,.

E(o(t2) — 0 (t1)? = E(expx((t2)) — expix(t)))® = E (7 + e — 2ex(wx(®)
t t
— ezfol a?(x)dx + erOZ a?(x)dx
_ 2e% fotl a2(x)dx+3 f:z az(x)dx-k—/;)ll a(x)a(ty—t;+x)dx

o,
— ezfo a“(x)dx

" (1 N e—zftf 0dx o =3 ‘;2 2(xdx— [* a(x)(a(x)—a(tz—t1+x))dx)

IA

1 1.
22 [ 2200dx (1 _ e—% L @ 0odx— [ a(X)(a(X)—a(tz—t1+X))dX> .

The term inside the last parentheses being necessarily nonnegative, the term in the last
great exponential is nonpositive. MoreO\AeJﬁtl2 a?(x)dx| < M2jt, — t;] with M; =
SURcpo, 71 l2(X)], and sincea is a-Holder,

tl t1
f ax)@x) —a(ty —ty +x)) dx| < Cylto — tll"‘/ l[a(x)|dx < Cqylty — t1|* M4 T,
0 0

which implies| fttf a%(x)dx + fél ax)(@ax) —a(ty — ty + x)) dx| < M|to — t1|%, with
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M, = My(T). Thenusing thatu <0, 0<1—¢" < |u|, we haveE (o (t2) — o (t1))? <
2K2Malt, — 1], € 10, 3[ whereK = exp(fo+C>O a?(x)dx) as previously. Then,
E(o ([ns]/n) — 0(s))? < 2K2M,(3)* gives:

2
ECh® - Y02 < XYL e, T)

which ensures the? convergence.

We use a straightforward version of Burkholder’s inequality (see Protter 1992, p. 174),
E|M(|P < C IE(M) , whereC,, is a constant and/; a continuous local martingale,
Mo = 0, to write (with an immediate adaptation of the proof tnt;] instead of [Q t]):

to p t2 p/2
E[Yn(t) — Ya(t)|P = E / o (E) dwl(s) f o’ (@) d

t n t n

< CpE

Let us choose = 4:

2
E[Yn(t2) — Yn(t)|*

IA

C4E

[ (1) s
L () (5 oue

C4// vEG4 x Ec4dudv (6 given by (2.7))
[t1.t2]?

+00
C4EG4(t — ty)2, E64 = exp (8/ az(x)ds> )
0

IA

This gives the tightness and thus the convergence.
_ The second convergence is deduced from the first one, the decompoidn: =
Ya®) + Un(t), with ua®) = o(@Hwit) — wi(ltl)), and Theorem 4.1 of

Billingsley (1968): (Xn 2 X andp(Xn, Zn) —> 0) = (Zn 2 X), wherep(x, y) =
SURcpo, 17 IX() —Y(1)]. Herep (Y, Yn) = sup|un(t)] andun(t) = M([nt]/n)isamartingale
so that Doob’s inequality (see Protter 1992, p. 12, Th. 20) gives:

2
E( sup |un<t>|> <4 sup E(un(t)?).
te[0,T] te[0,T]
Then,

Eun(t)?

’ (GZ (@) (wl(t) —w! (@»z)
) <02 <¥>> . (wl(t) ot <$>>2
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==<t_2?)E(#<2§))s%Ew%,

which achieves the proof. O
Proof of Proposition 3.2

e First we prove the following implication:

5 D . ~ ~
Yan ortight _ <\~(n(t)) e (Y(t)> imply (Y“) z <Y>
on = o ortight on(t) o(t) on o

Indeed, the functional convergences of both sequences imply their tightness and thus
the tightness of the joint process. This can be seen from the very definition of tightness
as given in Billingsley (1968), that can be written féy. Ve, 3K, (compact set) so
thatP(Y, € K,,) > 1— (¢/2) and then, for thig, we have fos,: 3K}, (compact set)

so thatP(c, € K})) > 1 — 5. Then:

P((Yn, 6n) € Kn x Ky = 1—P(Y, ¢ K, oré, ¢ K/)
1—P(Ya ¢ Kn) —PGn ¢ Kp)
= P(Y, e Kp) +P@Gre K —1

1-—s.

v

v

Now, the tightness and the pointwiké convergence of the couple imply the conver-
gence of the joint process. N
e Let us check the pointwiske? convergence oY,

B [nt]/n [ns] t 2
EMat) —Y(1)2 = E [ <&n <T> —a(s)> dwl(s) +ﬁ ]a(s)dwl(s)
0 =

[nt]/n 2 t
/ E ((5n (@) — U(S)> ds +/ E (0?(9)) ds.
0 n [nt]/n

The last right-hand term is less th#ﬁ(&z) and goes to zero whangrows to infinity
and the first right-hand term can be written, for the part under the integral, as

E (&n <$) — o(s))z) =E (exp(/olm]/n a <t - @) dwz(S))

2

t
— exp(/ at — s)dwz(s)>> )
0

Now, for X, andX following A/(0, EX2) and\ (0, E X?) respectivelyE (eX»—e*)? =
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e2EX] 4 eZEX* _2eB(Xn+X)/2 which goes to zero whamgrows to infinity if[E. X2 -
n—+o00
EX? andE(X, + X)? — 4EX?.
n— 400

This can be checked quite straightforwardly here vth= fg a(t — s) dw?(s) and
Xn = fo[m]/n a(t — [ dw?(s), so that:

[nt]/n [ns] t
EX2 = / a? (t — T) ds — a’(t —s)ds=EX?,
0

n—+o00 0

s [nt]/n 5 [ns] t 5
E(Xn+ X)© = a t_T ds+ | a“(t —s)ds
0 0

[nt]/n ns|
+2/ a<t—u>a(t—s)ds—>4]EX2.
0 n n—-+o00

This result gives in fact both? convergences of,(t) and of&,(t).

e The tightness o6, is then known from Comte (1996) and the tightnes&ptan
be deduced from the proof of Lemma 3.1 wigh,*(t) instead off5#, which is still
bounded. O

Proof of Proposition 4.1 We work witho (t) = exp(ffOO a(t — s)dw?(s)), but the
results would obviously still be valid with the only asymptotically stationary versian. of
We use here and for the proof of Proposition (4.2), the following result:

h—+o00

+oo
(A1) Vn >0, lim hi—2 (f a(x)a(x + h) dx) =C,
n

whereC is a constant. This result can be straighforwardly deduced from Comte and
Renault (1996) through rewriting the proof of the result about the long-memory property
of the autocovariance function (extended here to the ga4®).

e We know thaty, = E(o2(t +1) | F) = exp2 [y a2(x) dx)exp2 [* _at +1—
s) dw?(s)). Then:

COMYt+h, Vo) = E(Virn¥t) — E(Yern)E(W)

1
= exp<4/ az(x)dx>
0

t+h
x E (exp<2/ att+h+1—s)ydw?(s)

—00

t
+ zf att+h—-s) dwz(s))>

[e¢]

1 +o00
— exp(4/ az(x)dx> x exp(4/ a’(x + 1)dx)
0 0
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+00 +o0
= exp<4/ a?(x) dx) (exp(4/ ax + hya(x) dx) — 1) )
0 1

This proves the stationarity of theprocess, and, with (A.1), which gives the order
of the term inside the exponential, implies the announced driet..
e E(o(t +h)| F), still with the stationary version af, is given by

t 1 t+h
exp(/ att+h—-s) dw2(3)> x exp(E / a’t+h—ys) ds) )
oo t

Then, agEE(o (t + h | F)))? = (Eo (t + h))?, we have:

h 400
Var(E(o (t +h) | F)) = exp(/ az(x)dx> x exp(Z/ a’(x + h) dx)
0 0

+00
- exp(/ az(x)dx)
+02> +o00
= exp(f a2(x)dx) <exp</ az(x)dx) — 1> .
0 h

As a(x) = x*a(x) = x*L.xax) = O(x* 1) for x — 400 since we know that
limy_, 100 Xa(X) = ax. Then, forh - +o0,

+00 +0o
/ x*H2(xax))?dx = O <a§0/ x2“‘2dx) = O(h*™h.
h h

Developing again the exponential of this term for greafives the ordeh®~*, and
even the limit of the variance divided >~ for h — +o0, whichisK (a2 /1— 2a)
with K = exp( ;"™ a%(x) dx).

Fora = 0,a(x) = e X gives obviously for the variance an ordee . |

Proof of Proposition 4.2 We have to compute c6, z; ).

1 1
E(znz) = E( / E(o2(t +h +U) | Fiin) du x / E(oz<t+v>|ft>dv>
0 0
1,1 u t+h v t
2 2 h+u—s) du? d 2 —s) du?
_ // [E(e(zfoa(x)dx)e( [ at+hiu-s) dw (s))e(zfoa(x)dx)e( [ at+v-s)dw (s))ﬂdudv
0Jo
1 p1 u v t t+h
)— 2 —
_ // |:e(2f0 2(x)dx+2 [ az(x)dx)e(Zfim(a(t+h+u—s)+a(t+1 9) ds)e(zﬁ a2(t+h+u S)dS):|dUdU
0Jo

1,1 +oo +o0
_ / / e(4fo a (x)dx+4f0 a(x+h+u)a(x) dx) du dv.
0Jo
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Moreover, with the same kind of computations we &g, ) E(z) = exp(4fo+°ca2(x) dx»
so that:

+00
CoMZ, Ziyn) = exp<4/ az(x)dx)
0

1 p1 +00
X [/ / <exp<4/ a(x+h+u—v)a(x)dx)—1>dudv]
0 JO v

Thenz is stationary and another use of (A.1) gives the otd&r? for h — 4oo0. O

Proof of Proposition 4.3 LetZ(t) = fg o (Wdwt(u). Thenwe know (see Protter 1992
p. 174, forp = 4) thatEZ(t)* = *4VE |1 72(5)d(Z)s. As (Z)s = 5 o?(u)du, we
find: EZ(t)* = GE(fS Z2(s)o?(s)ds) = 6[5 E(Z2(s)0(s)) ds, with Fubini’s theorem.
ThenE(Z2(1)o (1) = E(f, (o (D)o (u) dw(u)? = E [j(0(t)o?(u)) du (o andw® are
independent). This yields

t S
Ezm“:e/ / (fo2(s — u]) + (Eo??) du ds
0 0

wherer is the autocovariance function, and, lasiiyh) = 3h?(Eo?)? + 3 [fo.pye Fo2(Is =
u))duds

e Near zero, the autocovariance functiorwdfis of the same kind as the onemfwith
a replaced by 8, sinces = exp(x). Then we know from Proposition 2.1 that, for
h — 0: r,2(h) = r,2(0) + Ch®*1 4+ o(h%*1), whereC is a constant and < ]0, i[.
Then replacing irp(h) gives

3C

20+3 h20(+3
T2t TohT.

p(h) = 3n?((Ec?)? +1,2(0)) +

Fora = 0,a(x) = exp(—kx) givesr,2(h) = ¥ (exp(2e") — 1) which leads to:
r,2(h) = r,2(0) — 2e%*h 4 o(h), for h — 0. This implies the continuity fox = 0.
Now, E(Y (h) — EY (h))2 = E(Jy o (u) dw(u))? = E J3 02(u) du = hEo2 implies
that

4

o
Eo2 %

iI1|Ln0 kurty(h) =3

e From Proposition 2.2, we know that, fare |0, %[ andh — +o0,

// r,2(Js—u)duds= O <// u®1du ds) = O(h%**Y),
[0.h]? [1.h]2

but for @ = 0, r,2(h) = €/*(2e™¥" + o(e™M)). This gives the result and the
exponential rate fow = 0. O
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Proof of Proposition 5.1 Letm =[Nt/ T], then

m tx 2 m t
k_z E(/t o(s)dwl(s)> =$ _Z E(ft az(s)ds>
=m—p+1 k-1 k=m—p+1 k-1

E ftm 2)ds| = LE0)(ty — tn_g) = 2 p x Eo?, = Eo?
tm—pa _T 7 " mip_Tp npO"_ 7

E&rip(t) =

—H| >

—| >

whereEo? = exp(3 [, a?(x) dx). This ensures th&! convergence of the sequence,
uniformly int.
Before computing the mean square, let:

f(|1z)) = Eo?(uyo?(u + |2)
+00 +o00

exp<4/ a2(x)dx+4/ a(x)a(x + |z|)dx) .
0 0

f(2)

Then

m

2
E[67 ,(1) — 0?(®)]? = E[$ > (Ytk—Ytk_l)Z—az(t)}

k=m-p+1

n? m 2
ﬁE[ > (Ytk—vtkf}

k=m—p+1

m

2
+ EG4(t) - 2$E |: Z Uz(t)(Ytk - Ytk1)2:| :

k=m—p+1

We consider separately the different terms.

tx 2 t
E [/ o (t)o(s) dwl(s)] =E U a?(t)o?(s) ds}
tk—1 k-1

t
/ f(t —s)ds
tk1

asco andw?! are independent. As in a previous proof, we have:

1% 4
IE[/ a(s)dwl(s)] =3// f(u—v)dudo,
ty—1 [te-1,t%]?

and forj # ki E[(Y, — Yy )2(Yy — Y4 )% = E(Ji 02®)ds x [ o?(s)ds). This

E[o20)(Y, — Y %]
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gives:

m 2 m
E|: Z (Ytk_Ytk_1)2:| =2 Z //[ | f(u—v)dudv
te—1.5]?

k=m—p+1 k=m—p+1
+// f(u—v)dudv.
[tm—p,tm]2

Now with all the terms:
n2 m
Bl6Z,0 "] = 15 (2 > [[  fwu-vdud
k=m—p+1 [tk-1.t]?

+// f(u—v)dudv)
[tm—pstm]2
2

+]Eo4(t)—?n/ f(t—s)ds

[tm—patm]
2n?2

= 77 (fu—v)— f(0)dudv
T2 k=n12;)+1//[;k1qtk]2

n2
+ T2 //[tm_p,tm]z(f(u —v)— f(O0)dudv

2n 4

Eo
(f(t—s) — f(0))ds+2——.
T Jltn pota] p

LetK; = exp(8f0+°° a?(s)ds). Thenf (h) = Kair, (h) wherer, is as in Proposition 2.1.
Proposition 2.1 then implies f(h) — f(0) |< K;C | h |2+, whereC is a positive
constant.

This implies that:Ve > 0,37 > 0, sothatjv —u| < n = |f(v —u) — f(0)| < e. Let
thene = 1/p, thenn = n(e) is fixed and

E[52 (1 Z(t)]2<2”2 T\ 1+n2 T\? 1.2 T 1+2E02
— — XPX|— ) X=F=X|— ) X=F=XP—X— —_—
TnpI e =72 P\ np) e ) e T P p T

if [tm — tm_p| = = < n, which implies|ty — t_1| = % < n. Then

2 1 2 1
E[65 ,(t) — 0?(D]* < (5 +1+2+21E02> X 5= (—p +3—|—2]E02> x o

Thenva > 0, n > T/ = pr2E[32,(t) — o?(t)]* < &, whereC = 5+ 2Eo2.

— pa’

The stationarity implies thattheresultisuniforntjsothat lim  sup plfaE[&nzp(t)
n'p*’Jroote[O,T] ’

— o] =0. O
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APPENDIX B

We suppose here= 0 andi, = 0, so thax@ (t) = (Ino)® (t) can be written:
t
X@(t) = e (x(”)(O) +/ sy dzi)z(s)> )
0

ThenU?Z; = ftT o2(u)du can be written:

T t u
2 _ U=9" @ ) < W=9" @ )
Ut _/t exp<2 A r,(1_i_01)dx (s) ) x exp| 2 \ F(1+a)dx (s) ) du.

Then the first part, exi@ fé ﬁ‘;;jfy) dx@(s)), is “deterministic” knowing#;. For the second

part, since we have fa > t thatx® (s) = e <=Ux(t) + [ e™* 0y dw?(x), we find
that

t
x@(s) = e K=9x@ 1) +f ey di?(x),

S

PU=9T e @ (_ TU=9" s )
/t F(1+0[)dx (s) = xY1) x k t I‘(1+a)e ds
k[ Y=Y [P ke, g
k L Tarw ) € y dwo(X)
u (u_s)ot -2
| tare di?(s).

This term depends then only qw® (t)) and onfuture increments of the Brownian
motion®?; those increments are independenf This is the reason we can write

fu—-9* o _ @ (1Y
exp<2 t 71“(1—1—01) dx (s)) = f(x'(); Z(u, t, o).

At time t = t;, this gives the announced formula, with f(x® (t); Z(u,t, @))] =
x@ ()p(t, u) + Z(u, t, a); ¢(t, u) is a deterministic functionZ (u, t, «) is a process inde-
pendent ofF;:

u _ o S u _ o
Ztua) = —k [ YT [Tk, gz 4 [ U5

N ~ 2
T+ )i | Tato®:
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