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Summary. Non-Gaussian processes of Ornstein—Uhlenbeck (OU) type offer the possibility of
capturing important distributional deviations from Gaussianity and for flexible modelling of
dependence structures. This paper develops this potential, drawing on and extending powerful
results from probability theory for applications in statistical analysis. Their power is illustrated by a
sustained application of OU processes within the context of finance and econometrics. We construct
continuous time stochastic volatility models for financial assets where the volatility processes are
superpositions of positive OU processes, and we study these models in relation to financial data and
theory.
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1. Introduction

1.1.  Motivation
Non-Gaussian processes of Ornstein—Uhlenbeck (OU) type have considerable potential as
building-blocks for stochastic models of observational series from a wide range of fields.
They offer the possibility of capturing important distributional deviations from Gaussianity
and for flexible modelling of dependence structures. This paper aims at developing this
potential, drawing on and extending powerful results from probability theory for applica-
tions in statistical analysis. We illustrate their power by a sustained application of OU
processes within the context of finance and econometrics. On the basis of well-known
(empirical) stylized facts, we construct continuous time stochastic volatility (SV) models for
financial assets where the volatility processes are superpositions of positive OU processes,
and we study these models in relation to financial data and theory. The study has also
required the development of new numerical methods and these are discussed in detail.

The general definition of an OU process y(¢) is as the solution of a stochastic differential
equation of the form

dy(f) = =X y(1) dt + d=(r) ()
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where z, with z(0) = 0, is a (homogeneous) Lévy process, i.e. a process with independent and
stationary increments (see, for example, Rogers and Williams (1994), pages 73-84, Bertoin
(1996, 1999), Protter and Talay (1999) and Sato (1999)). Familiar special cases of Lévy
processes are Brownian motion and the compound Poisson process. All Lévy processes
except for Brownian motion have jumps. As z is used to drive the OU process we shall call
z(t) a background driving Lévy process (BDLP) in this context.

Our interest in this paper will be in the existence and properties of stationary solutions to
equation (1) in cases where z has no Gaussian component and the increments of z are
positive, implying positivity of the process y. We shall write a continuous time stationary and
non-negative latent process o°() as representing the changing volatility underlying a financial
asset. The simplest OU-based model for o*(¢) will have

do*(1) = =X o?(¢) dt + dz(\0), A>0. )

The unusual timing dz(\7) is deliberately chosen so that it will turn out that whatever the
value of A the marginal distribution of o”(7) will be unchanged. Hence we separately par-
ameterize the distribution of the volatility and the dynamic structure. The process z(f) has
positive increments and no drift. This type of process is often called a subordinator (Bertoin
(1996), chapter 3). Correspondingly o°(r) moves up entirely by jumps and then tails off
exponentially. This type of model has been used in storage theory by, for example, Cinlar and
Pinsky (1972), Harrison and Resnick (1976) and Brockwell et al. (1982). Extensions to the
autoregressive moving average (ARMA) case are discussed by Brockwell (2001). However,
under the models that we have in mind small jumps are predominant. Although having OU
dynamics looks restrictive, we shall show that we can construct more flexible processes by the
addition of independent OU processes.

The main advantage of these OU processes is that they offer plenty of analytic tractability
which is not available for more standard models such as geometric Gaussian OU processes and
constant elasticity of volatility processes. For geometric Gaussian OU processes, log {o?(7)} is
assumed to follow a Gaussian OU process. For constant elasticity of volatility processes

do®(1) = =M2(1) — ¢} dt + 6 o> (0)* db(1),

where b(¢) is standard Brownian motion, k > % . The former is highlighted by Hull and White
(1987) whereas the latter is used extensively by Meddahi and Renault (1996). For example
integrated volatility, which in finance is a key measure,

t

¥ (1) = J o*(u) du

0
= A1 —exp(=\)} *(0) + A JI [1 —exp{=A(t — 5)}]1dz(\s)
0

= A"z = (1) + o (0)), (€)

has a simple structure. (All integrated processes will be denoted by having a superscript
asterisk. The main examples are integrated volatility and intensity and the log-price level of a
stock.)

A more general class of processes, which is also quite mathematically tractable, is given by

0
(1) =j £(9)d=(n + ),
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for bounded, positive f(-) and with z as above. To be technically precise, {z(?)},5, is assumed
to be caglad (non-decreasing with right continuous paths) and {z(—7)},>, is an independent
copy of {—z(#)},5, but modified to be also caglad. Further, f(-) must be a positive function
tailing off sufficiently fast to ensure the existence of the integral. In particular if f(s) = exp(s)
we recover the OU processes. Given f(-) such a process is stationary and positive. This type of
process is reminiscent of a standard infinite order linear moving average model.

1.2. Stochastic volatility processes

Continuous time models built out of Brownian motion play a crucial role in modern finance,
providing the basis of most option pricing, asset allocation and term structure theory
currently being used. An example is the so-called Black—Scholes or Samuelson model which
models the logarithm of an asset price by the solution to the stochastic differential equation

dx*(t) = {p + o’} dt + o dw(o), 1 €0, S, 4)

where w(?) is standard Brownian motion. (We have used x*(¢) to denote the price level as this
is an integrated process.) This means aggregate returns over intervals of length A > 0 are

nA
= a0 = v (- D) )
(n—1)A

implying returns are normal and independently distributed with a mean of uA + So°A and
a variance of Ac”. Unfortunately for moderate to small values of A (corresponding to re-
turns measured over 5-minute to 1-day intervals) returns are typically heavy tailed, exhibit
volatility clustering (in particular the |y,| are correlated) and are skew (see the discussion in,
for example, Campbell et al. (1997), pages 17-21), although for higher values of A a central
limit theorem seems to hold and so Gaussianity becomes a less poor assumption for {y,} in
that case. This means that every single assumption underlying the Black—Scholes model is
routinely rejected by the type of data that are usually used in practice.

This common observation, which carries over to the empirical rejection of option pricing
models based on this model, has resulted in an enormous effort to develop empirically more
reasonable models which can be integrated into finance theory. The most successful of these
are the generalized autoregressive conditional heteroscedastic (GARCH) and the diffusion-
based SV processes. This very large literature, which was started by Clark (1973), Engle
(1982) and Taylor (1982), is reviewed in, for example, Bollerslev et al. (1994), Ghysels et al.
(1996) and Shephard (1996).

Our model will also be of an SV type, based on a more general stochastic differential
equation,

dx*(1) = {u+ B o*(0)} dt + o(2) dw(o), (6)

where o”(7), the instantaneous volatility, will be assumed to be stationary, latent and stochas-
tically independent of w(r). Even though o°(7) exhibits jumps x*(¢) is a continuous process
for all parameter values. This formulation also makes it clear that in the special case where
1=/ =0 an SV process can be thought of as a subordinated Brownian motion. We shall
delay our discussion of this well-known connection until Section 6. Instead our earlier
sections will focus on our main innovation, which will be to use OU processes to model o> (7).
We do this as it will allow us to gain a much better analytic understanding than conventional
diffusion-based SV models do.
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SV models in general, by appropriate design of the stochastic process for o?(7), allow
aggregate returns {y,} to be heavy tailed, skewed, to exhibit volatility clustering and to
aggregate to Gaussianity as A becomes large. To see why this happens, whatever the model
for o2, it follows that

aloy ~ N(pA + fo,, 7).
where
o = o**(nA) — o**{(n — 1A},
o * (1) = J[ o*(u) du.

0

()

So returns are scaled mixtures of normals, where the scaling is typically time dependent,
inducing dependence in the returns. Hence this model class can produce empirically reason-
able models. For example, if o°(¢) has an inverse Gaussian law then y, will be approximately
a normal inverse Gaussian (NIG) variable. In turn, these models allow us to think about the
appropriate implications for the pricing of derivatives written on underlying assets obeying
SV processes. We shall do this in Section 5 and Section 6.2.

It is possible to generalize equation (6) to allow for the feed-back of the innovations of the
volatility process into the level of the asset price. In particular, we write

dx*(1) = {u+ B o* (1)} dt + o(r) dw(r) + p dz(\i), (8)

where z(f) = z(t) — E{z(¢)}, the centred version of the BDLP. This allows the model to deal
with the so-called leverage type of problem that is associated with the work of Black (1976)
and Nelson (1991) which formalizes the observation that for equities a fall in the price is
associated with an increase in future volatility. We shall discuss some aspects of this model in
Section 4.

1.3. Structure of the paper

This paper has six other sections and an appendix. In Section 2 we discuss the detailed
mathematical construction behind the OU processes that we favour, focusing on building
appropriate BDLPs. We show that they are sufficiently flexible to allow us to design models
to fit marginal features of the distribution of returns as well as to deal separately with the
observed dependence structure in the returns. As this section is quite technical, readers whose
main interest is in the SV aspect of this paper could skip it on their first reading. Related,
more advanced, technical details may be found in our second paper on this topic: Barndorff-
Nielsen and Shephard (2000). Section 3 looks at the construction of volatility models by the
addition of OU processes. This provides a way of constructing a wide class of dynamics for
volatility, including (quasi-)long memory models. In Section 4 we give results for the tem-
poral aggregation of returns from a continuous time SV model. This allows us to relate our
linear SV models to the popular GARCH discrete time models associated with the work of
Engle (1982). In Section 5 we discuss the empirical fitting of these models by using linear and
non-linear methods. We show that it is not straightforward to implement likelihood-based
estimation procedures for our models, although various moment-based methods are simple
to use. Section 6 discusses various additional issues such as multivariate extensions of the
models and the precise connection between SV and subordination, as well as showing
formally that SV models do not allow for arbitrage and giving results on the pricing of



Non-Gaussian Ornstein—Uhlenbeck Models 171

derivatives written using an SV model. Section 7 concludes. Appendix A collects various
proofs and derivations which we have omitted from the main text of the paper.

2. Construction of Ornstein—Uhlenbeck processes

2.1. Definition and existence
Before we discuss the SV models in detail we shall introduce the mathematical basis of the
OU processes, showing how they are constructed and how to simulate from them.

The stationary process o” is of OU type if it is representable as

(1) = JO exp(s) dz(\t + ) )

in which case it may also be written as

1
o*(1) = exp(—=\1) 0*(0) + J exp{—A(t — 5)} dz(\s).
0
Here z = {z(¢): t € R} is a (homogeneous) Lévy process and A is a positive number. When
this is the case o>(7) satisfies the stochastic differential equation (2). The process z(7) is termed
the BDLP or subordinator corresponding to the process o%(7). A simulated example of the
paths that the o%(7) and z(\f) processes follow is given in Fig. 1.
In essence, given a one-dimensional distribution D (not necessarily restricted to the positive
half-line) there is a stationary process of OU type (i.e. satisfying a stochastic differential
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Fig. 1. OU process with I'(v, «) marginals (throughout, » = 3, « = 8.5, A = 0.01 and A = 1): (a) z(AnA) against
n (short series, BDLP); (b) o?(nA) against n (short series, volatility process); (c) o?(nA) against n (long series,
volatility process); (d) empirical autocorrelation function for 62(nA) (correlogram)
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equation of form (1)) whose one-dimensional marginal law is D if and only if D is self-
decomposable, 1.e. if and only if the characteristic function ¢ of D satisfies ¢(¢) = ¢(c() ¢.(¢)
for all ¢ € R and all ¢ € (0, 1) and for some family of characteristic functions {¢,: ¢ € (0, 1)}.
This restriction does, however, still leave a great flexibility in the choice of D. The precise
statement of existence is as follows; cf. Wolfe (1982) and Jurek and Vervaat (1983) (see also
Barndorft-Nielsen ez al. (1998)).

Theorem 1. Let ¢ be the characteristic function of a random variable x. If x is self-
decomposable, i.e. if

P(Q) = ¢(cC) ¢(Q)

for all ¢ € R and all ¢ € (0, 1), then there is a stationary stochastic process x(z) and a Lévy
process z(¢) such that x(7) =“x and

0 0
exp(Au) dz{\(t + u)} = J exp(u) dz(\t + u)

(10)

x(t) = J[_ exp{—A(t — s)} dz(As) = J

—00

for all A > 0.
Conversely, if x(7) is a stationary stochastic process and z(¢) is a Lévy process such that
x(f) =°x and x(¢) and z(7) satisfy equation (10) for all A > 0 then x is self-decomposable.

If the stationary OU process o°(¢) is square integrable, it has autocorrelation function
r(u) = exp(—Alu|). It will be helpful later to establish the notation that the cumulant-
generating functions for o*(7) and z(1) (if they exist) be written as

K(9) = log(Elexp {~0 o*()}])
and
k(0) = log(E[exp{—0 z(1)}])
respectively. Indeed they are related by the fundamental equality (Barndorff-Nielsen, 2000)

k() = J:o k{0 exp(—s)} ds, (11)

which can be re-expressed as
k(0) = 6 K (0) (12)

(where K'(6) = dk(0) /d0). It then follows that if we write the cumulants of o*(7) and z(1) (when
they exist) as respectively £,, and x,, (m = 1, 2, . . .) we have that x,, = m&,,, form =1, 2, .. ..

2.2. Levy densities
Suppose that we choose a probability distribution D on the positive half-line which is self-
decomposable. Then, as just discussed, there is a strictly stationary OU process

o*(1) = exp(—\t) 0(0) + J exp{—\(t — 5)} dz(\s) (13)
0
such that o°(¢) ~ D and where z is a Levy process. e increments of z are positive an
h that o*(7) d wh is a Lé The i f iti d

[0.9]

k(8) = log(E[exp{—6 z(1)}]) = — JO {1 —exp(=6x)} W(dx), (14)
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where W is the Lévy measure of the Lévy—Khintchine representation for z(1). We shall
generally assume that W has a density w. It is related to the Lévy density u of o*(f) by the
formula

w(x) = —u(x) — x /' (x) (15)
(this presupposes that u is differentiable) and, letting
=] v (16)
we have, moreover,
Wt (x) = x u(x) (17)

(Barndorff-Nielsen, 1998a). Finally, we shall denote the inverse function of W* by W™, i.e.

W(x) =inf{y > 0: W*(y) < x}.

2.3. Models via D

One approach to model building is to write down a specific parametric form for D and then
to calculate the implied behaviour of the BDLP. We do this here for the generalized inverse
Gaussian (GIG) marginal law o*(f) ~ GIG(v, 6, 7). (The standard notation for the GIG
distribution is GIG(], 8, v); however, the notation A was not available to us.) The GIG class
seems particularly interesting as a plausible model basis for volatility models as special cases
have been extensively used (though in different contexts from the present) particularly in
various recent papers. See, in particular, Eberlein and Keller (1995), Barndorff-Nielsen (1997,
1998a), Rydberg (1999) and Eberlein (2000). Recall that if x ~ GIG(v, 6, 7) then it has a
density

6)’ 1

where K, is a modified Bessel function of the third kind. When 6 or 7 is 0, the norming
constant in the formula for the density of the GIG distribution must be interpreted in the
limiting sense, using the well-known results that for x | 0 we have

—log(x) if v=0,

Ky(x) ~ { 2\V|_1F(|V|)x_‘y‘ lf 14 # 0

Special cases of the GIG density are

(a) the inverse Gaussian law, where v = —%,

(b) the positive hyperbolic law where v = 1,

(c) the inverse y’-law with df degrees of freedom where v = —df /2,6 =.,/df and v =0,
and

(d) T, where 6 =0 and v > 0.

Of course if 0 ~ GIG(v, 8, ) and is independent of € ~ N(0, 1), then x = p + B0 + oe is the
generalized hyperbolic distribution. If we define a = 4/ (3* 4+ +%), then the density is

(v/6)"
V@2m)ar=12 K, (67)

{6+ (x = YR K,y [a/{67 + (x = )"} exp{B(x — p)}. (19)
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Hence a continuous time volatility model built using a volatility model of OU type with GIG
marginals will have generalized hyperbolic marginals for instantaneous returns. Special cases
of this include the NIG distribution, the hyperbolic and the Student ¢. These distributions
have been studied in the context of finance in Prause (1998) and Raible (1998).

It is known that the GIG(v, 6, ) law is self-decomposable (Halgreen, 1979) so station-
ary OU processes with GIG marginals do exist. The following theorem specifies the Lévy
measure.

Theorem 2. The Lévy measure of the GIG distribution is absolutely continuous with
density

u(x) = x! {% J:c exp(— %6‘2x£) g,(&€) d§ 4+ max(0, 1/)} exp(— 72—x> (20)

where

2
gl/(x) = R{J\zu\(\/x) + N\ZI/\(\/X)}7]

and J, and N, are Bessel functions.

For a proof see Appendix A.

For the definitions and properties of Bessel functions see, for example, Gradstheyn and
Ryzhik (1965), pp. 958-971.

We note that the Bessel functions have simple forms when |v| is half odd. We shall now
discuss four special cases of this result.

2.3.1. GIG(—5, 6, 'y) inverse Gaussian
Its law means thdt o*(1) ~ IG(6, ) whose density is

\/(2 )exp(&y)x exp {— 5(52)(1 + sz)}, x>0, 1)

where the parameters 6 and v satisfy 6 > 0 and v > 0. We find that the upper tail integral
(recalling that W*(x) = x u(x)) is

6 1
W+(x) = mx_lﬁ eXp <— 5’72X> . (22)

2.3.2. GIG(1, b, v): positive hyperbolic distribution
The density of the positive hyperbolic distribution is

/0 _l 2 -1 2
2K1(§7)exp{ 2(6x —I—Wx)}, x>0,

where the parameters § and v satisfy § >0 and v > 0. When the law of ¢’() is positive
hyperbolic we find that the upper tail integral is

) 2
wWt(x) = {52 J exp(—x§) g,(26%€) dé + 1} exp(— %) (23)
0
2.3.3. GIG(—v, 6, 0): reciprocal gamma distribution

The reciprocal gamma distribution (i.e. the law of the reciprocal of a gamma variate) has
density
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FCZV) x 7 exp(—ax7h), x>0, v>0, a= (52/2.

The corresponding upper tail integral is

W () = L L exp(— o~ x6) g,(6) dé. (24)

234. GIG(v>0,0,~): gamma distribution
The gamma marginal law has probability

v 2
FO([V) X! exp(—ax), x>0, a= 5

This has the corresponding upper tail integral of the Lévy density W*(x) = v exp(—ax),
which has the convenient property that it can be analytically inverted:

W' (x) = max {0, —llog <5>} (25)
@ v

2.4. Models via the background driving Lévy process

Instead of specifying a model for o°(r) and working out the density for the BDLP, it is
possible to go the other way and to construct the model through the BDLP. Of course there
are constraints on valid BDLPs which must be satisfied. Specifically a necessary and sufficient
condition for the stochastic differential equation

dx(f) = = A x(¢) dt + dz( ) (26)
to have a stationary solution is that E[log{1 + |z(1)|}] < oo (cf. Wolfe (1982) and Jurek and
Mason (1993), theorem 3.6.6).

Lemma 1. Let z be a Lévy process with positive increments and cumulant function

log(E[exp{—02(1)}]) = — jo (1 — exp(—0x)) W(dx).
and assume that
Joo log(x) W(dx) < oo. 27)
1

Suppose moreover, for simplicity, that the Lévy measure W has a differentiable density w,
and define the function # on R, by

u(x) = Jjo w(Tx) dT. (28)

Then u is the Lévy density of a random variable x of the form
X = J exp(—s) dz(s)
0

and the specification
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x(1) = Jr_ exp{—A(t — s)} dz(s)

determines a stationary process {x(f)},.x with z as its BDLP.

Proof. The proof may be concluded from a more general result given in Jurek and Mason
(1993), theorem 3.6.6.

2.4.1. Example 1
We give a simple valid construction which allows easy simulation and analytic results for the
implied density of o*(r). Let W be a Lévy measure determined in terms of its tail integral by

WH(x) = ex (1 + x)7" exp(— %fyzx)
where c¢ is a positive constant, 0 < e < 1,0 < 3, 0 < vy and max(8— 1, v) > 0. Then
w(x) = c{ex™ + B(1 +x)7 + 17171+ x)77 exp(—147w). (29)

Hence lemma 1 applies and ensures the existence of an OU process o>(1) whose BDLP z(¢) has
w as the Lévy density of z(1). Furthermore, recalling that the Lévy density u of o°(¢) satisfies
xu(x) = WH(x), we find that

u(x) = ex” (1 4+ %) exp(— 1v7x).

For e =1 and 3 = 0 we recover the inverse Gaussian law for o*(7). If v = 0, implying 3 > 1,
then for the moments of o”(7) we have

E{o* (1)} < 00 if and only if v < 8+ e.

Furthermore, the jth-order cumulant of o(¢) (j < § + €) is ¢ B(j — €, 8 + € — j) where B(x, y)
denotes the beta function.

The idea of modelling by choice of Lévy density rather than probability density has been
introduced into the study of turbulence by Novikov (1994) and Koponen (1995) to capture
the distributional characteristics of distributions of velocity differences in high Reynolds
number turbulent fluids (where, in fact, NIG laws generally give very good fits; for an
example, see Barndorff-Nielsen (1998b)). Related work is discussed in Cont ef al. (1997) and
Mantegna and Stanley (2000).

2.5. Simulation via series representations
A crucial feature of our approach will be that we simulate from the volatility process

t

o%(1) = exp(—=\t) 07(0) + J exp{—\( — 5)} dz(\s)
0

to simulate returns from the x*(¢) process and so to analyse data. To be able to do that we
shall have to simulate from

At

exp(—Ar) L exp(s) dz(s), (30)

rather than from the BDLP z(s) itself. One approach to this is to simulate directly from the
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Lévy processes and then to approximate the corresponding integrals. This is difficult owing to
the jump character of the processes. Instead we use infinite series representations of these
types of integrals. The required results are, in essence, available from work of Marcus (1987)
and Rosinski (1991). A self-contained exposition of this result is given in Barndorff-Nielsen
and Shephard (2000), whereas recent developments are surveyed in Rosinski (2000); see also
Protter and Talay (1999), Ferguson and Klass (1972), Vervaat (1979) and Walker and Damien
(2000). The last three papers discuss, in particular, simulation procedures in line with those
considered in the present paper but for non-homogenecous Lévy processes satisfying a
regularity condition. Again we let W be the Lévy measure of z(1) and W' denote the inverse
of the tail mass function W*. Then the desired result is that

A o0
|| Fra0 5wt/ o). (1)
Here the {a;} and {r;} are two independent sequences of random variables with the r;
independent copies of a uniform random variable r on [0, 1] and ¢; < ... < a@; < ... as the
arrival times of a Poisson process with intensity 1.

Our practical experience with using expression (31) is that it is quite quickly converging;
however, theory suggests that it must be used carefully. Consider the special case of the
inverse Gaussian model; then equation (22) implies W ~'(x) will, for large values of x, behave
essentially as x~2. This is studied in more detail in Barndorff-Nielsen and Shephard (2000).

2.5.1. Example 2: gamma—Ornstein—-Uhlenbeck (T (v, a) marginals) process

We need a method to sample from expression (30). We have already noted the expression for
W~'(x) in equation (25). Thus, defining ¢; < ¢, < ... as the arrival times of a Poisson process
with intensity vAf and N(1) as the corresponding number of events until time 1, then

At

exp(—\f) J exp(s) dz(s) = exp(—\7) i W (a,/At) exp(Atr,) (32)

0 i=1

=~ exp(=A0) 3 Ty (/1) Tog(a,/vA) exp(Aer)
i=1
=a " exp(—\t) Z} 1,1(cy) log(c; ") exp(Atr;)

N()
=a exp(=At) 3 log(c; ") exp(Arry).
=1

To illustrate these results we simulate a regularly spaced OU gamma process o>(nA) using
the above representation for the parameter values A =1, v =3, A =0.01 and o = 8.5. The
results are presented in Fig. 1. There we graph both z(AnA) and o*(nA) against time using
only a small range of values of n, which shows the jumps in the process. Of course the z(AnA)
process is a non-decreasing integrated process, whereas the o°(nA) process is stationary. For
the larger series we see that the jumps look less extreme and instead our eyes tend to focus on
the large upward movements in the OU process followed by slower declines. The final picture
is the corresponding empirical autocorrelation function of the o*(nA) process. Finally, it is
worth noting that the simulation is very fast for OU gamma processes. Over many different
parameter values we could produce processes of length of half a million in around 5 s on a
modern personal computer using the Ox programming language of Doornik (1998).
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3. Superposition

Although we have focused on the simplest OU volatility process, our model and technique
extend to where volatility follows a weighted sum of independent OU processes with different
persistence rates, i.e.

m
() = X w (o),
=1
where

>Swi=1,
j=1
with
dor(t) = =\ o7 (1) dt + dz,(\0),

where the {z/(#)} are independent (not necessarily identically distributed) BDLPs. In such a
case we would have a process for the price of the type

Ay (1) = {p+ SO} di + o(r) dw(d) + 37 p, dZ(AD),
j=1

where zZ,(f) = z;(t) — E{z,(#)}, allowing the leverage effect to be different for the various com-
ponents of volatility.

By the adding together of independent OU processes with different persistence rates we
obtain more general correlation patterns in the volatility structure. This implies an autocorrela-
tion function which is a weighted sum of exponentials

r(u) =w eXp(_)‘l |u|) +...+ Wi eXp(_Amlul)a (33)

where the w; are positive and sum to 1. Hence some of the components of the volatility may
represent short-term variation in the process whereas others represent long-term movements.
Alternative, discrete time, empirical models of this are discussed by Engle and Lee (1999),
Dacorogna et al. (1998) and Barndorff-Nielsen (1998a).

By choosing the weights and damping factors in equation (33) appropriately and letting
m — oo it is possible to construct tractable volatility models with long-range or quasi-long-
range dependence. In particular, Barndorff-Nielsen (2000) shows that there is a limiting
model for which

ru) = (14 Afu]) 0

with A >0 and H € (4, 1) being the long memory parameter. (Barndorff-Nielsen (2000)
constructed this, and more general models, not by a limiting procedure, but in terms of the
theory of independently scattered measures and Lévy random fields.) Similar types of
arguments have previously been used for real-valued time series models by, for example,
Granger (1980) and Cox (1991). Ding and Granger (1996) have studied long memory in
volatility using the addition of short memory processes whereas Andersen and Bollerslev
(1997a) have used the theory of heterogeneous information arrivals to motivate a long
memory volatility model. Finally, Comte and Renault (1998) constructed a long-range
dependent SV model by writing the logarithm of the instantaneous volatility as fractional
Brownian motion.
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It is possible to extend this to multifractal behaviour where

m

r(u) =S w1+ Nu) 20, Hie(l 1), X\>0,

i=1

and where the w; are positive and sum to 1. These types of continuous time models imply that
discrete returns have long memory features.

4. Aggregation results

4.1. Behaviour of x*(t), the log-price
In this section we shall study the behaviour of integrals, or aggregations, of the instantaneous
returns dx*(#). There will be two points of focus. First, in this subsection we shall look at the
log-price itself x*(¢), recalling that x*(0) is defined to be 0. The second focus, developed in the
next subsection, will be on characterizing the dependence structure of the returns {y,},
defined in equation (5) as the change in x*(¢) over non-overlapping intervals of length A.
First we shall state some general results for the non-leverage SV models given in equation
(6) with arbitrary SV processes; then we shall go on to produce a complete description of the
behaviour of x*(¢) in the OU volatility case allowing p # 0. In general we have that if we
write (when they exist) £, w” and r respectively as the mean, variance and the autocorrelation
function of the process o”(7) then

E{o**(n)} = &1,
var{o>*(1)} = 2w* r¥¥(1),

where

r*(t) = r r(u) du,
’ (34)

t

r**(1) = J r*(u) du

0

(we use r**(f) to denote the double integral over the autocorrelation function). A con-
sequence of this result is that

E{x*(D)} = (n+ BOL,
var {x*(1)} = 1€ 4+ 2 W r¥¥(0),
whereas, when = (=0,
var {x*(1)*} = 6w’ r¥*(1) + 26°¢*.

Further we have that if o”(u) is ergodic then, as r — oo,

t
) =1 J o*(u) du — &, almost surely,
0
implying, for the SV model, that r~"/*{x*(r) — ut — 30°*(1)} is asymptotically normal with
mean 0 and variance & (i.e. the log-returns tend to normality for long lags—a similar result
has been known within the ARCH class since Diebold (1988), pages 12—-16). This follows
from the subordination interpretation of the SV models discussed in Section 6.1. The con-
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vergence of ¢ /2{x*(1) — pt — B 0>*(1)} to normality will, however, be slow in the case where
the process o°(¢) exhibits long-range dependence.

As x*(f) is the sum of a continuous local martingale (see Section 6) and a continuous
bounded variation process, its quadratic variation (QV) is o**(¢), i.e. we have

[*1(0) = plim [ 32 {x*(1/1) = x*()Y’] = o™*() (39)

for any sequence of partitions 1 =0 < £} < ... < t,, =t with sup,(f;;; — ;) — 0 for r — oo.
The QV estimation of integrated volatility has recently been highlighted, following the initial
draft of this paper and the concurrent independent work of Andersen and Bollerslev (1998a),
by Andersen et al. (2000) in foreign exchange markets.

When we assume that o°(¢) is an OU process then we can strengthen some of these results
to give a complete description of the leveraged x*(f) process (8) via its cumulant-generating
functional. The formula is in terms of the cumulant function k for the BDLP of o°(r).
However, it can easily be recast in terms of the cumulant function k for o(7); see formulae
(11) and (12). Let f denote an ‘arbitrary’ function; then the log-characteristic-function of
f+x*, which we interpret as the stochastic integral jooo f(s)dx*(s) (Protter, 1992), is

00

C<<z: L f-x*) _ AJ [k{Jexp(—As)}+k{H(s)}]ds+i<(u—Ap§)J fds  (36)

0 0

where

J= L (1 £2() — iCB f(u)) exp(—Au) du (37)

and
HO) = | (0040 = 108 s+ 1) exp(=Nay du —iGp f(5). (38)

The derivation of this result is given in Barndorff-Nielsen and Shephard (2000). It is important
to understand the full scope of this expression. It gives a calculus for computing all the
cumulants for any weighted sum of the path of the log-price. In other words this is a full
description of the whole process.

Expressions for the cumulant functions of the finite dimensional distributions of the x*-
process are directly obtainable from equation (36) by a suitable choice of f. As an illustration,
we consider the cumulant function for x*(¢) for an arbitrary value of ¢. For notational
simplicity we suppose that p = = p = 0; an extension to the general case causes no sub-
stantial difficulty. Letting /= 1;, ; we find, after a little algebra,

C{Cix*()) = A J:o K[LEAT{1 — exp(—AD)} exp(—As)]ds + A J; k[3 N1 — exp(—As)}] ds.

Note that from this formula the cumulants of x*(¢) are explicitly expressible in terms of the
cumulants of z(1) or, alternatively, of o*(7).

4.1.1. Example 3 )
Suppose that az(t) ~ 1G(6, =), as in expression (21); then k(0) = 6vy{1 — (1 + 29/72)1/2} and
so, by formula (12),
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50 20\ '? = 0"
= — 1 —_ = —1 m-t
k=2 (1423) = S

(5 2 m—1 %
weri(3) ()

where

Hence, for instance, the variance of x*(¢) is seen to be «,,(f) = (6/7)t, as could, of course, also

have been found by simple direct calculation.

4.2. Dependence of returns
In this subsection we derive the moments of discrete time returns implied

by a general

continuous time SV model. In particular when p and [ are 0 then, using the definitions given

in equations (34),

cov(oz, 0p,y) = W OrFE(AS),

cOr(J’%a )/3+s) = 6 r**(z),:ik(zAAsz)(f/w)z
= ¢ 'ATE 0¥ (As),
where
Or¥¥(s) = r¥¥(s 4+ A) = 2 r¥%(s) + r¥*(s — A)
and

g = 6A77 FF¥(A) 4 2(¢/w).

4.2.1. Example 4
If o*(1) ~ OU with its variance existing then r(u) = exp(—AJu|), which means
A2 {exp(=\ls|) — 1 4+ As} and

SrF(As) = A1 — exp(—AA)} exp{—AA(s — 1)}, s> 0.

This implies

COI‘(O'ﬁ, 0121+s) =d eXp{_AA(S - 1)}5

COr(yp, Viss) = € exp{—AA(s — D)}, s> 0,
where
2
I>d= {1 —exp(—AA)}
2{exp(—AA) — 1 + \A}
2
S . {1 —exp(—=AA)}

T S lep(AA) — T+ AA] + 208 Ew) 0

(39)
(40)

(41)

(42)

(43)

that r**(s) =

(44)

(45)

Equations (44) imply that o2 and y? follow constrained ARMA(I, 1) processes with common
autoregressive parameters and with the moving average root being stronger for o> than for
the y2. The ARMA structure implies that y, is weak GARCH(1, 1) in the sense of Drost and
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Nijman (1993) and as emphasized in the work of Meddahi and Renault (1996). Andersen and
Bollerslev (1997b), page 137, have fitted GARCH(1, 1) models to (seasonally adjusted) equity
and exchange rate returns measured at a variety of values of A and found that the above
aggregation results broadly describe the fit of the various GARCH models. These simple
analytic results generalize to the situation where we add together a weighted sum of
uncorrelated OU processes, as was suggested in the previous section on superpositions and
long memory models. Finally, as A — 0 so d — | and so o, behaves like a first-order
autoregression.

More abstractly, Serensen (1999) and Genon-Catalot er al. (2000) have independently
noted that when p = 6 = 0 then the return sequence {y,} is a mixing if the instantaneous
volatility o*(7) is o mixing and further that the mixing coefficients for returns are less than or
equal to the mixing coefficients for the instantaneous volatility process.

4.3. Leverage case
In the leverage case (8) the calculations are inevitably more specialized. When o*(r) ~ OU we
can produce very concrete results. In particular

E(ynyn+s) =0,
COV(y,,, ny»S) = E(ynyflﬂ) = A_lpK’Z{l - exp(—)\A)} exp{—)\A(s - 1)}9

L)

COV(yi, yi21+s) = <2)\2

+ p2u3> {1 —exp(=AA)}Y exp{—AA(s — 1)}.

The effect of the leverage term is to allow cov(y,, yiﬂ) to be negative if p < 0. However, in
addition both cov(y,, y> +s) and cov( V2,2 +s) damp down exponentially with the lag length s.
Exactly the same dynamic structure was found by Sentana (1995) in his work on the discrete
time quadratic ARCH (QARCH) model. Hence we can think of the QARCH model as a
kind of discrete time representation of our continuous time leverage model, generalizing the

unleveraged result associated with the work of Drost and Nijman (1993) and Drost and
Werker (1996).

5. Estimating and testing models

5.1. Olsen high frequency exchange rate data
In this paper we shall study 5-minute return series (recorded using Greenwich Mean Time)
for the Deutsche Mark—dollar exchange rate from December Ist, 1986, to November 30th,
1996, constructed from the Olsen and Associates database using the semi-cleaning procedures
carefully documented in Andersen et al. (2000). It is difficult to go below 5-minute returns
without suffering from problems of discreteness which we shall briefly discuss in Section 6.
Recent econometric papers on this topic include Russell and Engle (1998) and Rydberg and
Shephard (1998). The series is defined using an average of bid and ask quotations. As a result
they do not represent returns on transactions; however, the evidence of transaction data
(which is not generally available in this quantity) of Goodhart ez al. (1996) and Danielsson
and Payne (1999) suggests that the properties of transaction and quote data, at this fre-
quency, closely match.

The semi-cleaning procedure of Andersen et al. (2000) does not remove some heavy
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intraday effects in the volatility of the series; nor does it take into account the known timing
of macroeconomic announcements which influence the volatility in the market. We shall not
deal with the latter problem as adjusting for announcements is a challenging and important
task in its own right and so we judge this to be beyond the scope of this paper (see Andersen
and Bollerslev (1998b)). We have imposed some adjustments ourselves on the intraday
effects. These included taking out all data from 10.30 p.m. on Friday until Sunday 11 p.m.
each week, as well as bank-holidays. In addition we have estimated a strong intraday volatility
effect (see Guillaume ez al. (1997) for a discussion of this) by running a cubic spline (with 40
degrees of freedom) on the variance of each 5-minute period in active days. After some initial
analysis we have set the intraday effect to be the same for Tuesdays, Wednesdays and
Thursdays. Further, we have allowed the 5-minute return after the opening of the New York
stock exchange to have its own free level as its variance is much higher than the rest of the
data. The resulting smoothed estimate of the intraday seasonal component is given in Fig. 2.
The most interesting features of this graph is the high volatility of the series on Monday
mornings and Friday afternoons and the high level of volatility which generally occurs when
the New York market is open.

After full adjustments are taken into account, we are left with a single unbroken time series
made up of 684867 5-minute observations. For each observation we standardize it by dividing
through by its intraday effect in an attempt to achieve a homogeneous series. We then study
the marginal distribution of the resulting standardized series. Fig. 2 gives the log-histogram
of returns where we split the returns into four sections of 125000 observations (i.e. each
section is just over 2 years of adjusted 5-minute returns). To calibrate the graphs we have
drawn the corresponding normal density. The graph indicates that returns are consistently
much heavier tailed than is suggested by the normal distribution.

An interesting feature of the log-histograms is that the tails look almost linear, suggesting
that we need models for marginal returns over short intervals of the form

constant x | y|”* exp(—oy|y])

marginal distribution which is exponential.) One class of densities which has this property is
the NIG densities.

for some p,, p_ € R and o, o_ > 0. (Granger and Ding (1995) modelled |y,| as having a

|| — Mon—— Mid
2 ——Fri ----Sun

(b)

Fig. 2. (a) Estimated intraday pattern of volatility (standard deviations) for each day (in particular Monday,
average over Tuesday—Thursday, Friday and Saturday) over 5-minute periods using 10 years of data (the x-axis
denotes hours); (b) marginal log-density of returns over 5-minute periods (the data are split into series of length
125000; «---eeee , corresponding fitted normal log-density)
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5.2. Estimating marginal distribution

Although the basic data set that we use takes A as representing 5 minutes, we can think about
returns at other frequencies. In Fig. 3 we show the log-histograms of the fully adjusted
returns for a variety of values of A. As expected from our discussion in Section 4.1 on
aggregation, as A lengthens, the marginal log-densities seemingly become more accurately
approximated by quadratics, i.e. normal densities. Fig. 3 also shows the fitted log-densities of
NIG and Student ¢ type, where the parameters of the fit are chosen by maximizing the
corresponding likelihood assuming that the returns are independent and identically distrib-
uted (IID). We thus interpret these fits as of quasi-likelihood type.

Table 1 records the quasi-likelihood fits for each of the models, once again showing that
the normal distribution is dominated by the other candidates. Here, for simplicity of expo-
sition, we have only fitted symmetric distributions, as exchange rate returns (unlike equity
returns) are known to be approximately symmetric. Further p is taken to be 0, although in
theory we should allow it to depend on the difference in interest rates between the two
countries. However, in practice the drift is negligible in this case. Further for small values of A
the NIG outperforms the Student ¢ even though it is clear that the Student ¢ has heavier tails.
For larger values of A the fits are basically identical. The convergence towards normality as A
increases is also shown in Table 1 where we compute the average Kullback—Leibler distance
(per observation) between the normal density and the other two candidates that we study here.

5.3. Estimating dependence structure
We now turn our attention to the time dependence structure in high frequency fully adjusted
returns. The correlogram of the series itself shows little activity, but the squares are another
matter. We again decided to split our long series into the four shorter series of length 125000
and have drawn in Fig. 4 the average correlogram which results. Note that the x-axis of the
correlogram is marked out in days, not in 5-minute periods. Fig. 4(a) focuses on the short-
term dynamics and shows a fast initial decay which then levels out. Fig. 4(b), which averages
the correlograms within each day (the raw correlogram is very noisy), looks at longer-term
dependence and shows a slow decay with memory lasting many days.

Fig. 4(c) is more unusual. Each day has 288 observations of 5-minute adjusted returns. We
have computed the empirical variation within each day

5 88
Sp,288 = > V288(n—1)+j
Jj=1

which we know, from equation (35), should be a good estimator of the integrated volatility
over a day

{07*(288nA) — o**[{288(n — 1) + 1} A]} = 0 5gs.

As a result we call 5,21‘288 the QV estimator. Having computed the daily {s,z,, g3} series we have
drawn in Fig. 4 the average (over our four series) correlogram (starting at lag 3 to be com-
patible with the above analysis). QV-type estimators of the integrated volatility process {o=}
have been used before us in Andersen et al. (2000). They studied the empirical correlograms
and marginal distributions of the resulting statistics. However, they used unadjusted data.
Our theoretical results suggest that the autocorrelation function of the {0,2,1288} should be
proportional to that for the averaged correlogram for the {y>} process given in Fig. 4(b). This
seems to be very roughly confirmed here. However, we can see that the dependence among
the empirical variance is much stronger than among just the noisy plain squared returns. This
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Fig. 3. Log-densities of returns at different levels of temporal aggregation (histograms and estimated (by quasi-
maximum likelihood) NIG and Student’s t-distributions): (a) 5-minute returns; (b) 70-minute returns; (c) 7-hour
returns; (d) 27-hour returns (in (a) and (b) the histograms were computed using 128 bins; in (c) and (d) only 32

bins were used)

Table 1. Fit of the marginal distributions of returns y, using zero-mean, symmetric distributions¥
Model Measure of fit Results for the following values of A:
(distance from normal)
1 16 81 256

Student # Quasi-log-likelihood — 880240 —111090 —29215. —10884.

KL distance 34.22 2.048 0.2482 0.03944

Degrees of freedom 2.954 2.926 3.366 5.154
NIG Quasi-log-likelihood —879800 —111060 —29198. —10886.

KL distance 34.38 2.059 0.2549 0.03889

v, 6 0.709, 0.679  0.193, 2.52 0.0971, 6.65  0.0799, 17.0
Normal  Quasi-log-likelihood —971860 —116570 —29880. —10990.

TWe use the scaled Student 7, NIG (parameters v and ) and the normal distribution with unknown vari-
ance. A = 1 is chosen to represent 5 minutes. Reported are the maxima of the quasi-likelihood functions.
The Kullback—Leibler distance KL is the average difference (per data point) between the log-likelihood
function and the log-likelihood for the normal. We use it to measure the departure from normality of the

returns.

is not a surprise; nor does it indicate that the QV estimator brings any additional statistical
information beyond what is available from the autocorrelation function of the high frequency
squared returns.

The empirical results suggest that we shall not be able to build satisfactory volatility
models from the direct use of OU processes, for these have exponential decays in their auto-
correlation functions. Fig. 4(a) has a heavy initial decay which then falls less steeply at longer
lags. This immediately points us towards the use of the superposition of a number of OU
processes for the continuous time volatility.
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Fig. 4. Averages of five correlograms each with 125000 returns (labels for the lags of the correlograms are for
days, not 5-minute periods): (a) first 750 lags, to show the short-term dynamics; (b) next 15000 lags to focus on
the long-term pattern; (c) equivalent QV estimator based on squared 5-minute returns measured over a day

In this section we shall assume that the instantaneous volatility process {o*(¢)} is made up
by the addition of m independent stationary processes {of(l)}. For ease of exposition we shall
assume

m

CHOEDINAD)

=1
o7 (1) ~ 1G(dwy, 7).

where X2, w; = 1 and {w; > 0}. The inverse Gaussian assumptions will play no formal role in

this analysis as it will be based only on the second-order properties of the model. Then
o’ (1) ~1G(6, ), and so E{o*(1)} = ¢ = &/~ and var{c*(1)} = w’ = §/7°. The corresponding
integrated volatility is

.= > T
=
nA (46)
an = J 0?(2‘) dz.
‘ n—DHa
An implication is that var(y,) = A&. Further, for s > 0,
COV(y%’ y5+s) = COV(O’,Z,, 0'31+S) (47)

= Z wj COV(Q}%?’ q;?n+s)
Jj=1
=’ > W Ort(As)
J=1
=’ S w1 —exp(=NA)) exp{—NA(s — D}
Jj=1

To estimate the parameters of the model we used a fitting procedure which employed a
non-linear least squares comparison of the empirical autocovariance function {c,}, based on
the single time series of length 684000 observations, with the parameterized model given in
equation (47). In particular the criterion that we minimized was
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Fig. 5. Fitted and raw autocovariance functions for the single series of 684000 observations (the x-axis is
marked in days, not 5-minute periods; the graphed fit uses a superposition of four independent OU processes): (a)
short lags, average autocovariances in the day (rather than all the 5-minute correlations); (b) long lags

Table 2. Fit of the autocovariance function using a variety of superpositions of OU processest

m w; exp(NA) W’ Ss

1 1.00 0.99988 0.303 430.7
2 0.212 0.788 0.99995 0.99982 0.335 346.1
3 0.017 0.064 0.919 0.99995 0.99982 0.9064 4.13 336.9
4 0.008 0.030 0.061 0.901 0.99995 0.99982 0.9931 0.711 8.75 334.8

TThe fit is based on the single series of around 684000 observations. The number of processes is
denoted by m. The weights are denoted by w;, whereas the memory of the components is exp(\;A). The
variance of the volatility is written as w dl‘ld appears in cov()?, y,m) Finally, Ss denotes the sum of
squares.

3x288 123 (] 288 1 288 2
Z {C - COV(yn, yﬂ+s)} + 288 Z { 288 Z Co88s+k — 288 Z COV(yn, yn+288\+k)}

The second term in this expression is slightly non-standard for we are working with the
average autocovariances over each day of lags. The raw data are given in Fig. 5, together with
the corresponding fit using m = 4. The broad picture is a fast initial decay, together with a
small amount of correlation at longer lags.

Table 2 shows the fitted parameters for the analysis. It shows the effect of the changing
value of m. For small values of m longer-term dependences are focused on, whereas for larger
values of m the longer-term dynamics are clarified whereas the short-term dynamics are
picked up. The most interesting feature of Table 2 is that a very large percentage of the
volatility changing in the process is basically unpredictable. Hence we can think that this is
merely a heavy-tailed component of the exchange rate movements. However, around 10% of
the volatility movements are largely predictable. It is these effects which are more important
when we measure returns at longer time horizons.

5.4. Traditional inference approaches

5.4.1. Background

In this subsection we shall discuss likelihood and various moment-based estimators of the
parameters indexing the SV models. In addition we shall outline several approaches to
estimating the current level of volatility in the series given a sequence of returns.
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5.4.2. Likelihood

In principle we would like to use likelihood methods to estimate a fully parametric version of
the model. To be concrete we shall work with the IG(6, v) OU process with no leverage. Then
the likelihood function for 0 = (u, 3, 8, v, A),

f(ys 9) :Jf(yla L) .VT|0%: LS 0%"; s ﬁ)f(oli LIRS 0%"; 67 Y )\)d(f%, AR dG‘%—
T
= [{ st w9 0% dhssn vaat . ach

is, unfortunately, not directly computable (see, for example, Kim ez al. (1998) and West and
Harrison (1997)). We can simulate from f(o7, . . ., 07; 6, v, \), by first recalling that

o2 = *(nA) — ¥ *{(n — 1A} where o?*(1) = A\ {z(\1) — o(¢) + 62(0)}, (48)
= A" (z(\nA) — *(nA) — [z{\n — DA} — o*{(n — 1)A}])
while noting that

exp(—AA) JA exp(Ar) dz(Ar)
) + ns

{ o*(nA) } _ (exp(—)\A) o {(n—1)A)} = 0

z(AnA) z{A(n — DA} JA dz(\)
0
(49)

Here the {n,} are IID and can be simulated by using equation (31) or by other methods.

5.4.2.1. Example 5. Suppose that the o°(¢) is an OU process with I'(v, o) marginals. Then
the result in expression (32) applies and we have

N(1)
exp(—AA) Y log(c;!) exp(AAr)
=1

N(1)

> log(eih)
i=1

11D

h =« s Fi ™~ U(Oa 1)9

and defining ¢, < ¢, < ... as the arrival times of a Poisson process with intensity vAA and
N(1) as the corresponding number of events up until time 1.

In general we do not know the explicit form of f(o1, . . ., o7; 8, 7, \), and so we cannot
hope to solve for f(y; 6) analytically or to use an importance sampler to estimate the like-
lihood function. However, estimating the likelihood function without using an importance
sampler is likely to be hopelessly inaccurate. Hence, with currently available techniques,
direct likelihood methods are not feasible in our case.

Although the likelihood function is not directly available it may be possible that we could
carry out Bayesian inference based on Markov chain Monte Carlo (MCMC) methods (Gilks
et al., 1996) to draw samples from 6|y if we place a prior on . This method has proved
effective for log-normal SV models (see Jacquier et al. (1994) and Kim et al. (1998)) using the
idea of data augmentation designing an MCMC algorithm for sampling from 6, ¢°|y, where
o> = (o1, ..., 03). A generic scheme for carrying this out is as follows.
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Step 1 initialize o* and 6.

Step 2: update o® from ¢°|, y, by using a Metropolis—Hastings algorithm (one element
at a time (e.g. Carlin et al. (1992)) or by using a blocking strategy (e.g. Shephard and Pitt
(1997))).

Step 3: perform a Metropolis update on 6]y, o°.

Step 4: go to step 2.

Cycling through steps 2 and 3 is a complete sweep of this sampler. The MCMC sampler
will require us to perform many thousands of sweeps to generate samples from 6, 0| y. Wong
(1999) has shown that even in cases where it is possible to produce quite good samplers for
drawing from step 2 of this procedure, in effect sampling from o°|y, 6, the overall perfor-
mance of the sampler is extraordinarily poor. This is because knowing o7, . . ., o7 basically
determines A in a simple OU model—i.e. when we know the volatility we are overcon-
ditioning. The easiest way of thinking about this is to work with a discrete time version of this
type of model where

0121 = eXp(—)\)O',2171 + Th»
where 77, > 0 and is IID. Then
exp(—=A) < min(aﬁ/oﬁ,l).

This suggests that the likelihood function will have a mode very close to exp(—A). Indeed it
can be shown that the maximum likelihood estimator of A is superconsistent for this type of
problem (see Nielsen and Shephard (1999) and the references contained within). Hence the
sampler is completely unable to move speedily through the sample space. This is not the
case in a log-normal SV model (see Kim ez al. (1998)). This very unfortunate effect seems
inevitable for this type of parameterization.

The above problems can potentially be removed if we reparameterize the MCMC problem
to work more directly in terms of the components of the shock terms {7,}. Recall that they
have an infinite series representation (31) which can be used to simulate from them. Each draw
in these infinite series is based on the sequences, independent over n, {a;,} and {r;,}. Here the
r;, are independent copies of a uniform random variable r on [0, 1] and ¢, < ... < q;, < ...
are the arrival times of a Poisson process with intensity 1. Suppose that we truncate the
sequence after K random variables for each value of n and write a,,, = (ay,, - . ., ax,) and
Foy = (Fips - - I'i)s and a = (agy, - . ., ag)) and r = (ryy, - . ., ¢ry). Then we could perform
MCMC-based inference based on sampling from

10, a, r, )y} o f{10, a, r, 0°(0)} f{o7(0)I8, 7} f(a, 7).

This is straightforward for

T
fwmmn#wn=gﬂth

as 6, a, r and ¢°(0) determine {o,}. In principle this would only be an approximation (owing
to the truncation of the infinite series representation), as it would be based on K variables;
however, if K was chosen as a large number then it is likely to perform well.

So far we have not implemented this strategy as it is computationally burdensome.
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5.4.3. Best linear predictors

To simplify the exposition suppose that 3 = p = 0 (which may be reasonable for exchange
rate data). (The extension to the leverage case would write y, = uA + z, + u,, and y2 =
p*A? + o> + E(Z2) + u,.) Then we note that y,|o2 ~ N(uA, o2) and so

Vn A
=1 5, 5] T (50)
Vn wAT+ o,

var(u;,) = E(a;) = €A,
COV(U],,, u2n) = 2/~‘LA E(O%) = 2‘LLA2§,
var(u,) = 4u* A* E(0;) + 2 E(0))
= 4P AE 4 2{20° IFEF(A) + £ A7,

where u, is a vector martingale difference sequence. Further (o7, z,) is a linear process which
is driven by the IID noise {7,}. It is easy to see that

1 —exp(=AA)
E(m)zf( e’;pA )

var(n,) — 27 { L1 —exp(=20A)} 1 —exp(—AA) }

1 —exp(—AA) AA

These results imply that a linear state space representation of the (y,, y2) (with uncorrelated

{u,} and {n,}) is
Y\ _ [ kA 0 0
()= (1) + (8 Do

Z{A\n + DAY} — z(AnA) + o*(nA) — o*{(n + 1A}
(6% =
n+l1 0-2{(n_|_ 1)A}

{ 0 1- exp(—)\A) } (772/1 - 771n>

= o, + 5

0 exp(—AA) Min

which allows us to use the Kalman filter (see, for example, Harvey (1989)) to provide a best
linear (based on y, and y?) predictor of o> and the associated mean-square error. (As o> has
an ARMAC(1, 1) representation the minimal dimension of the state space form is 2. However,
it is possible to remove z{A(n + 1)A} — z(AnA) from the transition equation and to have a
single state variable. This would result in correlated measurement and transition noise.) Let
us write these quantities as s,,_; and p,,_; then it is straightforward in the case that 1 = 0 to
demonstrate that if s, > 0 then s,,_; is always non-negative and, in a steady state, takes the
form of a GARCH(1, 1) recursion in the squares of the data. We should note that these
estimates of volatility are really semiparametric, in the sense that they do not rely on any

distributional assumptions about the volatility process, only on &, w®,  and . For related
ideas, in the context of discrete time log-normal SV models, see Harvey et al. (1994) and

with
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Harvey and Shephard (1996) where a linear state space form is constructed for log(y?).
Estimates based on this representation are known to be inefficient (Jacquier et al., 1994)
principally because of the variance caused by inliers (small values of y?). This particular
problem does not necessarily carry over to our current treatment.

A simple way of estimating the parameters of this model is to use a (Gaussian) quasi-
likelihood based around the output from the Kalman filter (e.g. Harvey (1989)). The
asymptotic theory associated with the maximum quasi-likelihood estimator is worked out in
Dunsmuir (1979). It will be asymptotically equivalent to an estimator defined via the Whittle
likelihood.

The above arguments also generalize to where we sum m independent OU processes (46).
Suppose that £ {a_f(t)} = w;§ and Var{a_f(t)} = w/-wz. Then we have (a_f,,, z;,) are independent
over j and are again linear processes driven by noise {n,,}. In this set-up

1 - exp(—/\jA)>

E(77jn) = W/f( AA

var(y,) = 2w wz{ L1 —exp(—2X,0)] 1 —exp(—)A) }
lin) — j .

1 —exp(—=\A) NA

The resulting representation has 2m state variables. Further, the only change in the measure-
ment equation is that

E(a,) = E(0;)° + var(o;)

= 2’ 2} w, I (A) + €A%
J=

5.4.4. Particle filter
The Kalman filter’s estimate of o7 is the best linear estimator Syn—1 but it is not necessarily the
efficient E(o2|F,_,), where F,_, denotes the information that is available at time (n — 1)A. In
this part of the paper we show that this quantity can be recursively computed by using a
particle filter (see Pitt and Shephard (1999a) and Doucet et al. (2000) for a book length review
of this material) and, further, we shall indicate that the linear and efficient estimators are
close to one another.

A particle filter is a method for approximately recursively sampling from the filtering

distribution o2|F, for n=1, ..., T. It has the following basic structure (Gordon et al.,
1993).
Step I: assume a sample > (nA), . . ., ¥ (nA) from o2, o*(nA)|F,. Set n = 0.
Step 2: for each {c®™(nA)} generate K offspring
(i, "D+ DAY, k=1...K
using equations (48) and (49). Compute
% 1 2(m, k) y;21+1
log(Wm,k) = _E log(0n+] )_ 2m. k) k= 19 cee K.
20n+1

Step 3: calculate normalized weights w,, ; oc wy, , which sum to 1 over m and k.
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6
I —— True Linear filter
4r
2F
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Fig. 6. OU process with I'(v, ) marginals (throughout, A =1, v =3, a = 8.5 and A = 0.01): (a) true o2, the
best linear estimator and the particle filter's estimator of E(02|F,_ ;) plotted against time; (b) var(c?|F,_;)
plotted against E(c2|F,_;), where both terms are estimated by using the particle filter (to do this we take
T =2300)

Step 4: resample, with unequal weights, among the {o*™ {(n + 1)A}, Wik} to produce a new
sample a®{(n+ 1A}, . . ., ™ {(n+ 1)A}. This sample is approximately from a,zm | F -
Step 5: go to step 2.

As M grows large so the particle filter becomes more accurate, with the samples truly
coming from the required filtering densities. In practice values of M of around 1000—-10000
are effective, whereas we typically take K as 3. Fig. 6 gives an example where we simulate
from an OU process for {¢*(f)} and then use both the Kalman filter and a particle filter to
estimate the unobserved integrated volatility {o.} process. Fig. 6(a) shows that both pro-
cedures give rough estimates of the true integrated volatility with the major feature being
that the two estimates are close together. Extensive work on this aspect suggests that the
particle filter is only very marginally more efficient than the best linear estimator.

Fig. 6(b) graphs the particle filters estimate of var(c>|F,) against E(o2|F,) and shows that
the variance increases with the level of volatility, which is not surprising given the process
that generates the integrated volatility but is not reflected in the corresponding calculations
based on the Kalman filter.

5.4.5. Estimating equations

Earlier we derived general expressions for the second-order moments of the return sequence
{»y,}. Recently Serensen (1999) has studied how to use these moments to construct optimal
estimating equations for OU-based SV models. These results, together with more general
frameworks presented in Serensen (1999) and Genon-Catalot et al. (1998), provide powerful
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methods for estimating these types of model. However, we are yet to study their effectiveness
in practice.

5.4.6. Indirect inference

Equations (48) and (49) can be used to simulate a return sequence {y,} without any form
of discretization error. However, it is now clear that this is insufficient for us to conduct
straightforward likelihood-based inference, even when we are willing to use MCMC or
particle-filter-based methods. This situation is not unfamiliar in econometrics where a new
form of inference method, now generally called indirect inference, has been developed by
Smith (1993) to deal with such situations (see Gourieroux et al. (1993) and Gallant and
Tauchen (1996) for clear expositions). The basis of this approach is to use an incorrect
‘auxiliary model’, such as a GARCH(1, 1) model, as an approximation to the process and
then to correct for the approximation by simulation.

To establish the notation write y as the data, € as the parameters indexing the SV model,
$5(0) as a simulation of length S from the SV model based on the parameter 6 and 1 to be the
parameters of the GARCH(1, 1) model. Then indirect inference for # follows the following
approach.

Step I: find the maximum likelihood estimator of %

A~

= arg, max[log{Lgarcu(®; 1)}]

as if the data had been produced by the GARCH model.
Step 2: find 0 such that

7; = arg, max(log[Lgarcn {¥; JA/S(GA)}]),

i.e. change the simulated data until its GARCH version of the maximum likelihood
estimator is the same as that which results from the data.

We call 0 the indirect estimator of # and typically base it on very large values of S (many
times the sample size T'). It is typically consistent and asymptotically normal (e.g. Gourieroux
and Monfort (1996)). Of course it is also inefficient.

6. Further issues

6.1. Subordination

The modelling of financial processes by subordination of Brownian motion goes back to
Clark (1973). Recent work on this topic includes the variance gamma model of Madan and
Seneta (1990) (which is particularly notable as it uses a Lévy process as its subordinator) and
that of Ghysels and Jasiak (1994), Conley et al. (1997) and Ané and Geman (2000). Sub-
ordination of Brownian motion is taken here in a general sense. It means a time transformation
by a positive monotonically increasing stochastic process 7(¢) that tends to oo for ¢ tending to
oo and is independent of the Brownian motion . The resulting process is b{7()}.

Now consider models of the type

t

x*(t) = J o(s) dw(s), (51

0

where the processes ¢ and w are independent, w being a Brownian motion and ¢ being
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positive and predictable and such that ¢** — oo for r — oo. It turns out that, in essence,
there is equivalence between the model formulation by equation (51) and the model
formulation by subordination with an independent subordinator o**.

To see this, note first that the process x* is a continuous local martingale whose quadratic
characteristic satisfies [x*](r) = o *(¢). As is well known, the Dubins-Schwarz theorem (see, for
instance, Rogers and Williams (1996), page 64) tells us that, if we define processes v and b by

(1) = inf{u: [x*](u) > t}
and
b(t) = x*{(n},
then b is a Brownian motion and
(D)0 = {b{[x*1(D}}i50- (52)

To establish the equivalence it remains to prove that the processes b and o** are independent.
But this is equivalent to showing that

Elexp{i(f-[x*]+g-b)}] = E{exp(if-[x*])} E{exp(ig-b)}. (53)

But this is straightforward to show by using iterative expectations by first conditioning on o.

6.2. Pricing

6.2.1. Non-arbitrage

In this subsection we shall show that our leveraged SV model does not allow arbitrage. In the
case of no leverage, p = 0, non-arbitrage follows essentially from Lipster and Shiryayev
(1977), chapter 6, and is well known. The arguments given below combine their technique
with the Esscher transformation technique that is well known for Lévy process models. We
study the process in parts

x¥(1) = x3(0) + B0 (1) + p2(N) (54)
where z(t) = z(t) — t£ and

t

xg(t) = J o(s) dw(s)

0

with
o*(1) = exp(—\1) Jt exp(\s) dz(\s).

Once again we assume that w and z are independent, and we write {F,},., to represent the
filtration generated by the pair of processes (w, z). Further, in establishing non-arbitrage
only finite time horizons will be considered, i.e. we restrict ¢ to the interval [0, 7] for some,
arbitrary, T > 0.

We must verify the existence of an equivalent martingale measure (EMM) under which the
process exp {x*(#)} is a local martingale. Let P be the original probability measure governing
the behaviour of w and z over the time interval [0, T], let ¢ = 5+ % and let & be the solution to

K(p+0) — K(0) = Ep, (55)

existence of the solution being assumed. Now, define the process d(f) by d(t) = exp{u*(¢)}
with
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u*(t) = —p xg(f) — %qbz 0’2*([) + 0 Z(\) — Mt R(0) (56)

and where £(0) = k(0) — &6 is the cumulant function corresponding to the Lévy process Z, i.e.
the cumulant function of Z(1). Note that equation (55) may be re-expressed as

R(p+0) = k(©). (57)
Furthermore, let P’ be the measure given by dP = d(T)dP.

Proposition 1. Under the above set-up we have

(a) the process d(f) is a mean 1 martingale, and hence P’ is a probability measure, and
(b) the price process exp{x*(r)} is a martingale under P

The proof of this result is given in Appendix A.

6.2.1.1. Example 6. Suppose that z(1) ~ IG(8, v). Then
R(p +0) = K(0) = 67[(1 =20/ = {1 = 2p + 0)/4"}'"*]
=206/ 1)pl(1 =20/ + {1 = 2(p+0) /711!
= 26p[(1 =20/ + (1 = 2(p+ 0)/7}*17".
Seeking a solution to equation (55) is therefore equivalent to solving
(1 =20/ + (1 =2p+0)/7"}* =2. (58)

Suppose that p < 0, which is the econometrically relevant case. Then, as 6 increases from —oo
to its upper bound /2, the left-hand side of equation (58) decreases monotonically from co
to |p|a/2/7. Consequently, equation (58) is solvable if and only if |p| < v4/2 (which in
practice is not a very binding constraint).

6.2.2. Derivatives

The fact that our SV model is arbitrage free means there is at least one EMM with which we
can compute derivative prices. An important question is which one do we use? Recently
Nicolato and Venardos (2000) and Nicolato (1999) have tackled this problem for our model
when (1) ~ IG in the special case of p = 0. They have shown that a particularly convenient
option price formula results if we choose to price the derivative with the EMM, written Q,
which is closest to the physical measure, written P, in a relative entropy sense

J log(dQ/dP) dQ.

This way of selecting from a set of EMMs was advocated in Foéllmer and Schweizer (1991)
using an elegant hedging argument. In particular if we write
C{K, x*(nA), nA + A}

for the price at time nA of a European call option on x*(¢), with initial value x*(nA), strike
price K and expiration date nA + A we have that

C{K, x*(nA), nA + A} = E¢{x*(nA + A) — K}"

1 1
= J BS{K, x*(nA), — 01, NA + A} dP{ —a§+1|az(m)}
R, A A



196 O. E. Barndorff-Nielsen and N. Shephard

where BS{K, x*(nA), (1/A)o;,,, nA + A} denotes the Black—Scholes price of the option with
initial value x*(nA), strike price K and constant volatility (1/A)o,;. This is particularly
straightforward for the law of the volatility process is the same under the physical measure
and the EMM. This result extends to more general cases as long as the volatility process is
independent of the Brownian motion; in particular, it holds under superposition of OU
processes.

In practice we can unbiasedly estimate C{-} simply by simulation for we can quickly draw
many samples from o> 4l lo*(nA) by using the series representations developed in Section 2 of
this paper. Feasible alternatives to this approach include using either saddlepoint approxima-
tions or Fourier inversion methods based on the characteristic function, under Q, of

x*¥(nA + A)|x*(nA), o*(nA).

Here we shall derive the cumulant-generating function, whereas Scott (1997) and Carr and
Madan (1998) have discussed the computations involved in moving to option prices from this
type of function.

The required function is, for the canonical case of n = 1 and writing r to denote the riskless
interest rate,

K{C T x*(A)|x*(0), 0°(0)} = log(E®[exp {Cx*(A)}|x*(0), 0*(0)])
= {x*(0) + rA ) + K{(CB +5¢) £ oala*(0)).

(This is a slight abuse of notation for we have previously assumed that x*(0) = 0, which is not
our intention here.) Hence the only unsolved problem is to compute the cumulant-generating
function of o4 |5%(0).

Recall that

ox = A {z(AA) — X (A) + o*(0)}

= JA (A — 55 N) dz(As) + €(A; X) 07(0),
0

where e(z; \) = X' {1 — exp(—\7)}. Consequently it is sufficient to work with
K01 0110°(0)) = log[ E{exp(—603)|0°(0)}]

AA
= —0e(A; M) o (0) + K{a ! J {1 — exp(—=AA + u)} dz(u)}
0
AA
= —0e(A; \) o (0) + J K{OX {1 — exp(=AA +u)} T z(1)} du
0
A

= —0e(A; \)d(0) + A J K{0e(A —5; N1 z(1)}ds
0

— —0e(A; N)2(0) + A JA K{0e(s; \) T z(1)) ds
0

= —0e(A; NO0)+ N | k{fe(s; V) ds
0

1—exp(—AA)

= —0e(A; \) 0(0) + J (1 —u)"" k(A" 6u) du.
0
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6.2.2.1. Example 7. Suppose that z(1) ~ IG(8, ~), implying k(6) = 6~ — 6v(1 + 2v726)"/%.
Then

1—exp(—AA) 1—exp(—AA)

_ 1/2
(1 = u)™ k(O\ ' 0u) du = 6 J I-(+m)'”
0

0 l—u

= 57(AA — I(r, D)),

where k£ =2y °A7'0 and

1—exp(—AA) | 12
I(k, A) = % du
. —
= AAV(1 +n)+2[1 —b(k) + V(1 + k) log{%”'

Here b(k) = /{1 + k — k exp(—AA)}.

The result that we have the analytic cumulant-generating function, under Q, of x*(A)|x*(0),
0”(0) seems important for we can now regard the option pricing problem as being analytically
solved for this class of models. In the financial economics literature the only equivalent result
for SV models has been found by Heston (1993) and Dulffie et a/l. (2000) (see also Stein and
Stein (1991)) working with a square-root process

do* (1) = =M {d*(t) — ¢} dt + 6 o(r) db(7).

6.3. Trade-by-trade dynamics
Recently vast data sets recording the price, times and volumes of actual market transactions
have become routinely available to researchers. It is interesting to try to link empirically
plausible models of these trade-by-trade pricing dynamics with our SV models. To enable us
to present general results we shall adopt the Rydberg and Shephard (2000) framework for
tick-by-tick data. We model the number of trades N(¢) up to time ¢ as a Cox process (which is
sometimes called a doubly stochastic point process) with random intensity 6(z) = 6§ o*(7) > 0.
In general we write 7; as the time of the ith event and so 7y, is the time of the last recorded
event when we are standing at calendar time ¢.

Then a stylized version of the Rydberg—Shephard framework writes the current log-price as

)
xi(r) = Ty + 8 02*(71\/(;)) + % /; Vis (59)

where for simplicity the {y;} are assumed independent standard normal and

¥ (1) = Jt o*(u) du.
0

We assume that the Cox process and the {y;} are all completely independent. This model
models prices as being discontinuous in time, jumping with the arrivals from the Cox process.
Then we have the following result.

Theorem 3. For the price process (59), if the {y;} are assumed independent standard nor-
mal, o> *(1) = jot o?(u) du and N(7) is a Cox process with random intensity 8(r) = & o°(¢) >
0, then
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. %« c
lim {xX ()} = x*(),
6100

where x*(¢) is given in equation (6).

The proof is given in Appendix A.

This means that the tick-by-tick model will converge to an SV model as the amount of
trading becomes large and the average tick size becomes small. We should note that the
requirement that the {y;} are independent standard normal can be relaxed to allow general
sequences of {y;} which exhibit a central limit theorem for the sample average. This is
particularly useful for in practice the {y;} live on a discrete set and have quite complicated
dependence structures which are not easy to model (see Rydberg and Shephard (1998, 2000)).

6.4. Vector Ornstein—-Uhlenbeck processes

6.4.1. Construction of the process

So far our discussion has dealt with univariate processes. In this subsection we discuss
extending this to the case of a vector of OU processes with dependence between the series. We
introduce the g-dimensional volatility process

o*(1) = (01(1), - - ., 53(0))
via the BDLPs z(f) = (z,(1), . . ., z,()) as follows. The multivariate form of equation (14) is

k(0) = log(E[exp {—(0, z2(1))}]) = — JR(/ {1 —exp(=(0, x))} W(dx), (60)

where 0 = (0,, .. ., 0,), x=(x, ..., x,), R, =(0,00)and (0, x) = »1, 6.x;, and Wis a Lévy
measure on R%, i.e. a measure satisfying

J , min(1, (|x|)) W(dx) < oo,

T

where |x| is the Euclidean norm. Now let z = (z, . . ., z,) be a g-dimensional Lévy process
with log(E[exp{—(#, z(1))}]) as in equation (60). Suppose for simplicity that /¥ has a density
w with respect to Lebesgue measure, and let w,(x;) be the ith marginal of w, i.e.

wi(x;) = J ] w(x)dx; ... .dx;_ydx; ... dx,.
R

+

Imposing the condition
J log(x;) w;(x;) dx; < o0
1

we may then, on account of lemma 1, define the stationary process o7(7) by

0
oA(0) = J exp(s) dz(\t + ).

Note that

00

log(E[exp{—0,z(1)}]) = _J {1 —exp(=0;x;))} wi(x,) dx;.

0+
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The full specification of o* = (07, . . ., ofl) then rests on the choice of w, which we may aim
to reflect the dependences among the volatility processes o1(7), . . ., as(t).
This approach is at present under development. Here we just present a simple example.

6.4.1.1. Example 8. Let g = 2 and let w, defined in polar co-ordinates (r, a), be

w(r, a) = g(r; 6, ) bla; ¢)
where g(r; 6, ) is the Lévy density of the BDLP for the OU IG(6, ~) process and

o—1
ba: ¢) = B(6, ¢)—1{3a(1 —Ea)} ,
T T

¢ being a positive parameter. In the limit for ¢ | 0 we obtain that z,(s) and z,(s) are
independent BDLP-inverse Gaussian OU processes, whereas for ¢ 1 oo the processes z;(s)
and z,(s) tend to one and the same BDLP—inverse Gaussian OU process. Thus ¢ serves as a
dependence parameter.

6.4.2. Series representations
Series representations of multivariate Lévy processes are available from the work of Rosinski
(1990, 1999). Here we restrict discussion to presenting a result from the simplest type of
setting. A fuller account is given in Barndorff-Nielsen and Shephard (2001).

Consider a g-dimensional BDLP process z with density w(x) as in the Section 6.4.1 and let
w(r, a) (a = (ay, . . ., a,_y)) be the representation of w in polar co-ordinates. We assume, for
simplicity (and as in example 7), that w factors as

w(r, a) = g(r) b(a)
where g is a one-dimensional Lévy density on R, and b is a probability density. Now let

G7'(s) = inf{r > 0: G™(r) < s},

where
G*(r) = J <) dp.
Proposition 2. Let a;, j =1, 2, . . ., be the arrival times of a Poisson process with rate 1 and
letu,j=1,2,..., beanIID sequence of unit vectors independent of {«;}, such that the law of

u; is that determined by the probability density . Furthermore, for s € [0, 1] let
Z(s) = 2:1 1 () Gil(aj)uj (61)
I:

where {r;},cy is an IID sequence of random variables uniformly distributed on [0, 1] and
independent of the sequences {¢,};cx and {u;},cy. Then series (61) converges almost surely and

(z(s): 0 <t < 1} = {5(s): 0 <t < 1} (62)
Furthermore we have the following proposition.

Proposition 3. If f;, i=1, . . ., d, are positive and integrable functions on [0, 1] then
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1 )
L 76429 £ 5 67 (a)  £0) 63)
J=

fori=1, ..., dand the u; IID with law determined by b.

6.5. Multivariate stochastic volatility models

6.5.1. Model structure

A simple g-dimensional version of the SV model for log-prices sets x*(f) = {xF(?), . . ., xf]‘(t)}
with

dx*(1) = {p+ B ()} dr + =(0)'? dw(?),

where X(7) is a time-varying stochastic covariance matrix and 3 is a vector of risk premiums.
Corresponding to this model structure is the integrated covariance

¥t = J; 2(u) du.

Then defining y, = x*(nA) — x*{(n — 1)A} we have that
YalZ0 ~ N(ua + B3, 23,

where ¥ = 2*(nA) — Z*{(n — 1)A}.
We can estimate X*(¢) by using QV for x*(¢) is a continuous ¢-dimensional local martin-
gale plus a process which is continuous with bounded variation and so

[6¥)(0) = plim [ 37 {r¥(tf1) — XD} (x*(thy) — (Y] = £¥(0) (64)

for any sequence of partitions 1, =0 < #] < ... < 1,, =t with sup,(t;,; — ;) = 0 for r — oo.

6.5.2. Factor models
An important problem is to specify a model for £*(¢). One approach is to do this indirectly
via a factor structure

() = diag({o7(w), . . ., 05(W)}) + 741 (WS-

Here ¢ = (6, . . ., 8,) are unknown parameters and the oy, 05, . . ., 0,4, are mutually inde-
pendent OU processes which are square integrable and stationary. It has common, but
differently scaled, SV model and individual SV models for each series. It generalizes straight-
forwardly to allow for two or more factors. This style of model is in keeping with the latent
factor models of Diebold and Nerlove (1989), King et al. (1994), Pitt and Shephard (1999b)
and Chib et al. (1999). Its motivation is that in financial assets often returns move together,
with a few common driving mechanisms. The common factors allow us to pick this up in a
straightforward and parsimonious way. This model could be generalized by allowing the
volatilities to be dependent by using the multivariate OU-type processes introduced in the
previous subsection.

Finally, we should note that generating economically useful models via direct sub-
ordination arguments seems difficult even when we have vector OU processes. Let b(f) be a
vector of independent Brownian motions; then a multivariate, rotated, subordinated model
would be Bb{c*(r)}, for some matrix 3 and o°(r) a vector of dependent OU processes.
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However, such a model has a time invariant correlation matrix of returns, which is unsatis-
factory from an economic viewpoint (for example asset allocation theory depends on cor-
relations).

7. Conclusion

Non-Gaussian processes driven by Lévy processes are both mathematically tractable and
have important applications. It is possible to build compelling SV models using OU processes
to represent volatility. Log-returns from these types of model have many of the properties of
familiar discrete time GARCH models. These SV models are empirically reasonable as well
as having many appealing features from a theoretical finance perspective. In particular our
class of models does not allow arbitrage and gives very simple expressions for standard
option pricing problems under SV.

Although the treatment of OU processes that we have presented in this paper is extensive,
there are several unresolved issues. A principal difficulty is that exact likelihood inference for
SV models in continuous time but with discrete observations seems difficult. We hope that
others may be able to solve this problem.

The generalization to the multivariate case is at its infant stage and much work must be
carried out to make this a very flexible framework.

More generally, we believe that Lévy-driven processes have great potential for applications
in fields other than finance and econometrics, e.g. in turbulence studies. They can also be
further developed to a general toolbox for time series analysis. In this connection, we note
that, although in the present paper we have concentrated on integrated processes x*, one can
also introduce very tractable stationary processes x driven by Lévy processes and having
continuous sample paths, a simple and appealing possibility being the stationary solutions to
stochastic differential equations of the form

dx() = {p + B (1) — A x()} dt + o(2) dw(?) (65)

with o?(7) an OU process as in equation (2). See Barndorff-Nielsen and Shephard (2001) for a
discussion of some of the work on this topic and its use in interest rate theory. Another
alternative is to produce a positive stationary process by driving equation (65) not by
Brownian motion but by another independent Lévy process with positive increments.
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Appendix A
A.1. Background

This appendix collects various proofs and results which are not given in the main text of the paper. It
will be convenient to use the following notation for the cumulant function of an arbitrary random
variable x

C(¢ 1 x) = log[ E{exp(i¢x)}],
while writing
K{0 1 x} = log[ E{exp(—0x)}],

in cases where x is positive. Similar notation applies to vector variates

A.2. Generalized inverse Gaussian Lévy density: proof of theorem 2
Let z ~ GIG(v, 6, ). From Halgreen (1979) we have that if v < 0 then
K{0iz)=—6° J

72/

i 2,26 (y —77/2)} log(1 + 60/y) dy.

Differentiating both sides of this equation with respect to 6 and transforming the integral by setting
€ =y —~/2 we obtain

OK{0 1%z} - J~oo g,,(2(52§)(72/2 +9+€)—1 de
B .
S Jw 2.28%) r exp(—(+/2 + 0 + Ox) dx dé
0 0

=— Joo exp(—0x)x u(x) dx
0

and this shows that
) =8 | expl-x0)5,26°0 d€ exp(—17x/2)
0

is the Lévy density of z. In this connection see also Pitman and Yor (1981), page 346, where a
relationship with Bessel processes is established.
For v > 0 the expression for u follows from the convolution formula

GIG(v, 6, 7) = GIG(-v, 6, 7)*T'(v, */2)
where I'(v, ¢) is the gamma distribution with probability density

F¢(5y) X7 exp(—¢px)

and corresponding Lévy density vx™" exp(—¢x).

A.3. Non-arbitrage: proof of proposition 1
(a) For 0 < s <t < T we find that
Epld(0)|F} = Epl Ep{d(1)|z, F} F]
= exp{—At£(0)} Ep(exp{6 Z(\1) —1¢” 0°*(0)} Ep[exp{—¢ x5 (D}|o, F,]IF,)
and here

Eplexp{=¢ x5(D}lo, F,] = exp[—¢ xi(s) + 167 {07*(1) — 0™ (5)}]
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so that
Ep{d(1)|F} = d(s) exp{—=A(t — ) &(0)} Ep(exp[0 {Z(\1) — Z(As)} ]| F,) = d(s).

Thus d(¢) is a martingale and taking s = 0 we have that Ep{d(?)} =1 = Ep(1).
(b) Note first that

B30+ (1= =0.
By the martingale property of d() we have, for arbitrary F, measurable random variables y,,
Ep(y|F,) = Ep{y, d(T)/d(s)|F,} = Ep{y, d(1)/d(s)|F}.
Hence
Ep[exp{x*(0}|F] = Eplexp{x*())} d(1)/d(s)|F ]
= exp{x*(s) = At — 5) 5(0)} Ep(exp[(p + 0){Z(A1) — Z(As)}]T | F)
where
J=exp[(B =300 (1) = ** N Ep(expl(1 = 9) (x5 (1) — x5 ()]0, F).
However, by equation (66),
J=exp[{8 —56" + (1 = )’} (1) — o™ ()} ] = 1
so that, in view of condition (57),
Ep[exp{x*(}|1F,] = exp{x*(s) — At — 5) ()} Ep(exp[(p + ) {Z(A1) — Z(A)}]IF)
— exp[x*(s) = A(t — ) [”(p + 0) — ~(0)}]
= exp{x*(s)}.

A.4. Trade-by-trade dynamics

203

(66)

(67)

Lemma 2. Let N(1) be a Cox process with random intensity 6(¢) = 6 o°(r) > 0. We write 7; as the time
of the ith event and so 7y, is the time of the last recorded event when we are standing at calendar time ¢.

Then for § — oo we have that
2
TNG —> I.
Proof. 1t suffices to show that for every € > 0 we have that
Pr(no eventin [t — ¢, t]) — 0 as 6 — oo.

Now, via conditioning on the intensity process we find, for every §; > 0,

Pr(no event in [z — ¢, t]) = E[Pr{no event in [ — ¢, #]|6(:)}]

- E{exp{— J:, 8(s) dsH
~elon{=o [ 0w

= E(exp[—6{0”*(1) — o**(1 — }])

= E(1 24— (—0>81) exp[—8{o”*(1) — " (1 — €)}])
+ E(L 25y o2*-o <5, €XP[=8{0"*(1) — ™ *(t — €)}])

< Pr{c**(t) — c**(1 — €) < 6,} + exp(—6,6).
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Consequently

liTm sup{Pr(no event in [t — ¢, 1])} < Pr{c**(t) — ¢**(t — €) < 6,}

and since this holds for all §; > 0 the conclusion of lemma 2 follows.

A.A4.1. Proof of theorem 3

It is helpful to rewrite the process as

N

x50 = —p(t — Tae) + Bl (1) — Uz*(TN(/))} + B () + pt +— Z Y-

J(S
We obtain from lemma 2 and the continuity of o>*(¢) that the limiting behaviour in the distribution of
x¥(1), as § — oo, is the same as that of

N()

FE) = pt+ B +— Zyk

\/6

Further, for the characteristic function of X7(¢) we find that

N(1)
Elexp{i¢ ¥3(1)}] = exp(itp) E[eXp {ig8o™* (0} E{ exp (l& \}5 > yk) lo(: )H

— exp(itiy) E{exp{zw (1) E(exp [zg\/ { M) } ym] I )) }

where jy, = +/(1/n) (¥ + ...+ »,). Trivially, conditionally on é(-) we have that N(¢)/6 — o>*(¢) almost
surely as 6 — oo and yy,, ~ N(0, 1) exactly. Thus

lim (E{exp(i€ x¥(0)}]) = lim (ELexp (i€ (0)}1)
= limfexp(i&u) E(expli€ (8 0”*(1) + o*(u} ),

where u ~ N(0, 1) and is independent of ¢>*(7), i.e. the limiting distribution of x}(¢) is the same as the

law of x*(¢). This argument is easily extended to convergence of all finite dimensional distributions of
%y n

x5 (1), 1.e.

XH) S ().
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Discussion on the paper by Barndorff-Nielsen and Shephard

S. D. Hodges (University of Warwick, Coventry)

We have come a long way since Kendall’s (1953) work drew attention to the random walk nature of
price series. The current literature on this topic is now very extensive: there is a plethora of models
within at least three distinct categories, generalized autoregressive conditional heteroscedastic, stochas-
tic volatility (SV) and implied processes (not previously referred to). Barndorff-Nielsen and Shephard’s
impressive paper proposes a class of models for representing the observed behaviour of security price
processes. The paper belongs clearly within the SV family, to which it makes an important contribution.
It brings us closer to our philosopher’s stone, not of turning base metals into gold, but of combining
realism with tractability.

Empirical regularities
We start with the conventional empirical regularities, which have been well documented by many
researchers:

(a) returns are heavy tailed,
(b) exhibit volatility clustering and
(c) are skewed (in some cases).

Not too surprisingly, conditional return distributions become more Gaussian as the horizon is increased,
but at a slower rate than the central limit theorem would predict if they were independent and
identically distributed. Probably almost any model which combines these features will give a reasonable
description of price processes.

Class of models

Barndorft-Nielsen and Shephard have given us not one model but a class of models, indeed a whole
modelling approach. It is based on modelling the variance as an Ornstein—Uhlenbeck Lévy process with
positive increments: o°(7) moves up entirely by jumps and then tails off exponentially. This contrasts
with the more conventional SV models which allow stochastic movement in both directions and secure
non-negativity by scaling the shocks, or applying a transformation. It is also somewhat more realistic,
though I have some reservations about the feature that there can be a strong conditional lower bound
on the variance.

Using the generalized inverse Gaussian law for ¢°(¢) permits some simple forms. It would be nice to
know more about how these forms differ and the details of implementing them. This approach seems
likely to be more popular than the alternative of starting with the background driving Lévy process and
then deriving the density of o*(¢) from it.

The availability of efficient means of simulation is particularly important in the context of many of
the likely applications in the valuation of derivatives and risk management.

Estimations

The estimations described illustrate the techniques well and contain some interesting features: starting
with the data; the use of quotes was probably an advantage; the data cleaning problems arising from
bid—ask bounce in transactions’ data are more complicated (see Roll (1984) and elsewhere). In less
liquid markets there would be no point in working with such high frequency data. It comes as no great
surprise that volatility is very unpredictable or that a superposition of Ornstein—Uhlenbeck processes
was required to fit the autocorrelation function over the diverse time frames of this data set. In practice,
few applications really need such time consistency over different scales. Some data sets seem to show
negative correlation beyond about 50 days. A remaining puzzle is whether this is a real phenomenon
and, if so, what to do about it.

Although fitting the autocorrelation function satisfactorily will also provide sensible quadratic variation
(QV) estimates, since derivatives hedging is often directly exposed to the sample QV over various horizons,
there remains a case for the direct use of QV measures (see Hodges and Tompkins (2000)).

It is important to have comparisons between competing models. One such comparison is provided by
Tompkins and Hubalek (2000a). They use daily futures prices in various markets to compare four
models: a strawman GBM, a conventional diffusion-based SV model (Heston, 1993), a normal inverse
Gaussian Lévy return process with a diffusion SV and a Barndorff-Nielsen and Shephard model using a
gamma distribution for ¢*(¢). They conclude that the last two models clearly dominate the others, and
prefer the Barndorff-Nielsen—Shephard one for its convenience. It remains to be seen whether future
work can discriminate between these.
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Valuation

The paper describes one approach to the valuation of derivatives. This remains a continuing research
issue. As the authors describe, in an incomplete market there will be many different martingale measures
which support the prices of traded assets and give different valuations for untraded derivatives.
Although the use of the minimal martingale measure has become quite popular within the mathematical
finance community, this is more because of its elegance than its meaning, which remains doubtful. It is
close to assuming that unhedgeable residual risks are not priced, and comparable with using least
squares to estimate the location of a one-sided frontier.

Other issues

However much you give them, people want more. Further work on multivariate problems would be
immediately useful. The authors’ applications to term structure theory may also turn out to be signi-
ficant, though here it will take rather stronger reasons to displace the incumbent models.

Implied process models

Much as I admire the models presented and look forward to working with them, I have reservations
about the extent that the practitioner community is likely to embrace them. Derivative practitioners
require simple models, and models that exactly calibrate to the prices of traded assets, including
derivatives. When pricing exotic options, and hedging with plain options, it is nice to have a model that
returns the correct prices of the plain options—even if it is misspecified! Dupire (1992) was the first to
describe the principle of this implied process approach, which parallels the evolutionary term structure
theory of Heath er al. (1992). Subsequent papers, e.g. Rubinstein (1994), Derman and Kani (1997),
Britten-Jones and Neuberger (2000) and Skiadopoulos and Hodges (2000), have provided implementa-
tions for various deterministic volatility and (rudimentary) SV models. It would be of particular interest
if the current approach could be stretched to encompass this idea.

Finally, we must be aware that our price models are simply models and do not contain fundamental
truths in the same way as they might in physical situations. Long-term capital management and other
market events have shown us that even the most apparently reliable statistical regularities can be
brought to an end by a default, a change in an exchange rate regime or a monopolistic squeeze.

This paper makes an important contribution and deserves to be studied carefully. I have great
pleasure in proposing the vote of thanks.

Gareth Roberts (Lancaster University)

I would like to congratulate the authors on a thought-provoking paper which I am sure will stimulate
much further research into non-Gaussian Ornstein—Uhlenbeck (OU) models, and their use in financial
modelling. These models seem to offer advantages in tractability and flexibility over many existing
methods. I would like to concentrate on two aspects of the paper: the difficulty in performing exact
likelihood-based inference and the construction of models of this type which have long-range
dependence.

The authors mention two ways in which the non-Gaussian OU process can be specified —in terms of
the distribution of the Lévy process increments in a unit time interval or in terms of the invariant
distribution of the OU process itself. However, there is a third way which can be used to characterize a
large class of such processes. Since the driving Lévy process includes no Brownian or negative increment
components, we consider Lévy processes which make jumps according to some parameterized positive
jump distribution, at times of a Poisson process. Thus the OU process can be described as

T;
X, =Xy + > J; exp{=A — 1))}
=i

where ¢; denotes the time of the ith jump of the Poisson process and the J; are an independent and
identically distributed collection from the increment distribution.

This characterization suggests the parameterization of the OU process in terms of a marked Poisson
process where the jump sizes represent the marks of the Poisson process driving the jumps. Using this
parameterization, Markov chain Monte Carlo (MCMC) inference for the parameters of the jump
distribution, A and the latent marked Poisson process given the observed discretely observed stock price
data (assuming for example that the stock exhibits no drift) is in principle straightforward. The method
merely alternates between updating the points process, the jumps and the various parameters.

However, this method’s performance varies considerably depending both on the length and the
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density in time of the observed time series. Slow convergence is essentially caused by high serial
correlation between the latent variables and the parameters. The problem is particularly acute in the
case of sparsely observed time series, or any case in which the time series contains many data. The
problems of imputation where the imputed data contain considerably more information than the
actual observed data have been noted (see for example Roberts and Sahu (1997)) and are similar to
related problems encountered by corresponding EM algorithms (see for example Meng and van Dyk
(1997)).

With Omiros Papaspiliopoulos, we have performed a simulation study to investigate the performance
of this algorithm in many situations. Fig. 7 demonstrates the behaviour of the MCMC algorithm for a
simulated data set in which daily stock price data are simulated with A = 0.05, r = 0.1 and 6 = 0.05.
This data set is not even particularly sparse, with 10 data points per shock on average. However, the
MCMC traces of the parameters demonstrate hopeless mixing.

A much more robust algorithm can be produced by a modified parameterization, whereby the
Poisson process of rate A on [0, 7] is written as a thinning of a unit rate Poisson process on [0, T x [0,
00) where a point x is deemed to be in the Poisson(\) process if and only if (x, v) is a point of the unit
rate spatial Poisson process for some 0 < v < A. The new parameterization now records the spatial
Poisson process and A, two independent quantities a priori as unknowns. In all latent models of this
kind, the data are inherently weak in estimating hyperparameters of the unobserved latent process, so the
orthogonality of the prior is approximately maintained in the posterior. Fig. 8 shows output from this
improved sampler (which we call non-centred since it shows some similarities to the non-centred param-
eterization used in Gaussian hierarchical models; see for example Roberts and Sahu (1997)).

In the case of the superposition of multiple processes, problems with MCMC mixing are exacerbated
by identifiability issues, and it seems statistically dubious to attempt to fit large numbers of these
processes, at least by any formal likelihood-based method. The main motivation for using superposition
is to construct long-range dependence in the volatility process to conform with empirical observation.
An alternative approach is to use heavy-tailed jump distributions in the model described above.
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For light-tailed jump distributions with density /A(-), the exponential rate of convergence of the shot
noise OU process is A as the authors point out. However, if we set

h(x) ~ xl+p
for large x, then for sufficiently small p the rate of convergence of the process is strictly less than A.
Furthermore, for jump distributions with density

1

"0 Yogto

for large x we can produce arbitrarily slow polynomial rates of convergence for sufficiently small p > 0.
(To prove these results, it suffices to use Cheeger’s inequality; see for example Lawler and Sokal (1988).)
Of course, it is unclear to what extent processes with such heavy-tailed shocks model financial phen-
omena adequately.

It is a great pleasure to second the vote of thanks to the authors for their paper.

The vote of thanks was passed by acclamation.

Omiros Papaspiliopoulos (Lancaster University)

I would like to report on on-going work with Gareth Roberts and Petros Dellaportas inspired by the
paper currently under discussion. Our aim is to make likelihood-based inference for the class of models
introduced in the paper. In particular, we have looked at the case where the volatility is a shot noise
process (jump times arriving as a Poisson process with rate r, jump sizes independent and identically
distributed from an exponential distribution with parameter 6 and an exponential decay rate \) and the
log-price process is a subordinated Brownian motion. We model the background driving Lévy process
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Fig. 9. Comparative behaviour of (a) the centred and (b) the non-centred algorithm under different sampling
frequency: data were simulated from a driftless Brownian motion in an interval of 1000 days with shot noise
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100th iteration) for the parameter r for the two algorithms; in the first row the data are sampled daily, in the second
every 2 days and in the third every 10 days

as a marked Poisson process and treat it as missing data. Our aim is to sample, using Markov chain
Monte Carlo methods, from the joint distribution of the parameters and missing data.

For this we have constructed two Markov chain Monte Carlo algorithms which are feasible to
implement and fast to execute. The algorithms are described in more detail in the vote of thanks by
Gareth Roberts. The behaviour of the first algorithm, which we call centred, relies substantially on the
structure of the data, in particular the length of the time series and the sampling frequency. The quantity
of information about the parameters contained in the imputed missing data is substantially more than
that in the observed data. This induces a high dependence between the parameters and the missing data.
Our second algorithm, which we call non-centred, reparameterizes the missing data by introducing a
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marked Poisson process a priori independent of the parameter. This is then thinned and scaled using the
parameters to yield the ‘true’ marked Poisson process. By doing so, it breaks down the dependence
between the parameters and missing data. The non-centred algorithm is considerably more robust to the
structure of the observed data than is the centred version. The computing time per iteration is com-
parable in the two algorithms but slightly greater in the non-centred than in the centred version. The
behaviour of the two algorithms under different sampling frequencies is demonstrated in Fig. 9.

Both algorithms extend naturally to the case of superposition of Ornstein—Uhlenbeck processes.
Lately we have implemented the centred algorithm for the case of the superposition of two Ornstein—
Uhlenbeck processes. We are currently working on the implementation of the non-centred algorithm.

Enrique Sentana (Centro de Estudios Monetarios y Financieros, Madrid)
My comments are centred on several avenues for further research.

Other Ornstein—Uhlenbeck models

The independence assumption on the increments excludes models in which the volatility is either low or
high, with the transition probabilities being a function of the current state (see Hamilton (1988) or
Ryden er al. (1998) for discrete time versions). Given its binary nature, it is straightforward to write this
continuous time Markov chain as an Ornstein—Uhlenbeck (OU) process with non-independent and
identically distributed innovations. Such processes can be extended by superposition or by allowing for
more states.

Diagnostics

The statistical foundations for model diagnostics based on histograms and kernels, higher order sample
moments or sample correlograms have not been laid down yet. The issues are trickier for likelihood
comparisons of marginal distributions. Finally, the data used are ‘seasonally’ adjusted before applying
any other procedure.

Contemporaneous aggregation

Sterling—euro exchange rates are perfectly determined by sterling—dollar and euro—dollar rates. A
similar situation arises with returns on individual stocks and portfolios (see Meddahi and Renault
(1996) or Nijman and Sentana (1996)).

Identification

Although the results in Sentana and Fiorentini (2000) suggest that the identification of the underlying
components may be easier in multivariate stochastic volatility models than in traditional factor analysis,
those components may not be separately identified from a single series without further assumptions.
This seems to be in contrast with the fact that we could keep adding unobserved OU components to the
variance and retain identifiability.

Indirect inference

Given the dynamics implied by the model for discrete time observations, and the shape of the uncon-
ditional distribution for returns, it would be worth trying to estimate the OU stochastic volatility
models by indirect inference on the basis of quadratic autoregressive conditional heteroscedastic aux-
iliary models with leptokurtic conditional distributions (see Fiorentini et al. (2000) and Calzolari et al.
(2000)).

Mean returns

Volatility models for martingale differences are used in option valuation (but see Lo and Wang (1995)
and Leon and Sentana (1997)) and short run value-at-risk assessments, but not in asset pricing or
portfolio allocation. It may be possible to extend the work of Merton (1973), Cox et al. (1985) and
Chamberlain (1988) on asset pricing models based on Brownian motion processes to the models
considered here.

Finally, I congratulate the authors for their work. I am looking forward to reading Barndorff-Nielsen
and Shephard (2001a).

N. H. Bingham (Brunel University, Uxbridge)
I have several comments to make on this interesting and important paper.

The underlying Lévy measure and simulation
The idea (in Section 2.4) of using the Lévy measure W of the underlying Lévy process directly,
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particularly for simulation purposes, is a very good one and goes back at least as far as Bondesson
(1982). Bondesson’s approach is based on shot noise representations (or, equivalently, on Campbell’s
theorem), leading to series expansions, and associated truncation questions, akin to those of Section 2.5
around equation (31). What is needed is that 17 should be known explicitly.

Curse of dimensionality

The authors discuss (in Sections 6.4 and 6.5) the multidimensional case. In practice, the dimensionality ¢
corresponds to the number of assets in a portfolio, and with unlimited investment opportunities
available this may be large. Methods for which the computational complexity does not explode with ¢
are thus at a premium — in other words, the curse of dimensionality limits us. One way to avoid it is via
the theory of elliptically contoured distributions (Bingham and Kiesel, 2001; Hodgson et al., 2001); this
combines well with self-decomposability.

Quadratic variation

It is a far cry from knowing the link (35) to being able to exploit this link in practice. The crux is the
continuous time nature of quadratic variation and the discrete time nature of sampling. In addition to
the sources cited here, see also Genon-Catalot et al. (1999) and Kessler (2000).

Modelling volatility

The stochastic volatility models considered here are elegant, flexible and useful. Nevertheless, we need
to step back and to think about the actual nature of volatility in the real world, and of change and
uncertainty in it. A healthy scepticism towards any model of volatility is inescapably fostered by the
study of ‘financial forensics’ (the phrase is due to S. A. Ross)—the examination of major financial
disasters and lessons to be learned from them. A good example is the long-term capital management
debacle of 1998, for a good account of which see Dunbar (1999). Here, every modelling assumption
used by the highly sophisticated financial agents involved collapsed under the knock-on effects triggered
by Russia’s defaulting on its debts. Again, the markets can take fright at any reported remark of the
chairman of the Federal Reserve, Mr Alan Greenspan (the FT-SE 100 index dropped 4% in a day
after his ‘irrational exuberance’ comment of December 5th, 1996). I do not know how to model Mr
Greenspan.

D. R. Cox (Nuffield College, Oxford)

It is a pleasure to congratulate both authors on an extremely impressive paper. A central theme is that
of structured changes in variance. In most formulations, including the authors’, these are imposed
externally, not generated out of the dynamics of the process. Yet from a broad perspective a crucial
aspect is: how is variance structure generated and, if it is indicative of some underlying instability, how
can the system be modified? I appreciate that this is not the present authors’ objective.

A toy representation of such an internal generation is obtained from a non-linear first-order auto-
regression with Gaussian innovations {e,}, ndmely w1 =S (Y., €41) (Jones, 1978). If we expand by
Taylor’s theorem and drop the interesting term in Y? representing ultimate non-stationarity, then we
may represent such a process in bilinear form as

Y =aY, +B/o)Y e + €,

where a and (3 are dimensionless parameters. Conditions for a stationary distribution with finite
moments are known (Tong (1990), page 170). The bilinear form is mathemdtically but not conceptually
equivalent to an assumed form for the condmonal variance of Y,,; given the current state.

The linear Markov form of corr(Y,,,, Y,) as o’ is retained and subJect to a technical condltlon of
convergence which maybe can be evaded by truncatlon corr( Y,+h, Y?) is a mixture of terms in " and
(& + 89" If a = 0 the autocorrelation of squares is 3. T am, of course, not advocating this as a model
of any particular series, least of all, perhaps, financial series.

Elisa Nicolato (University of Aarhus) and Emmanouil Venardos (Nuffield College, Oxford)
Ornstein—Uhlenbeck (OU)-type models are appealing to derivatives pricing not only because they
capture stylized features of observed time series but also because closed form solutions are available.
This is mainly because the distribution of the integrated variance o>* is known. The following results are
discussed extensively in Nicolato and Venardos (2000).

Following Barndorff-Nielsen and Shephard, we start with an OU-type process for the variance under
the historical measure P. Then, there exists a family M’ of equivalent martingale measures (EMM:s)
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such that for arbitrary Q € M’ the associated risk neutral stochastic variance process is again of the OU
type, i.e.

dX, = (r —Lo?) dt + o, dW? + pdZ% — A r(p) dr,
do? = =)o dr + dz%
where r(-) is the cumulant function of ZIQ.
This subclass M’ is ‘sufficiently large’ in the sense that the range of option prices that can be spanned

by varying Q € M’ is the same with the range spanned by the whole set of EMMs. This range of option
prices is shown to be the open interval

min(c**)
(BS{S,, — } S,) (68)

where BS(y, z) is the Black—Scholes option price corresponding to the spot price y and volatility /z, and
where

1
mm@“)zxu—wmn—MT—nn&.
Two representations of the option price are available. Letting the Q stationary law of o> be, for
example, inverse Gaussian, the cumulant function of the log-price conditional on current information
In{p(0)} = ln[IE,Q{exp(i 0X;)}] is known analytically and is
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The price of a European call V(S,, o2, 1) with strike price K admits the representation
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for some @ > 1 in the domain of definition of the moment-generating function of X;. The relevant

inverse Laplace transform can be calculated numerically by using fast and reliable techniques.
Alternatively, the claim’s price also admits the representation

V(S,, 0%, 1) = E2(BS(S, 7)} (70)
where
~ 0'2*
e
and

S =S, exp{p(Z%r — Z5) — T — 1) (p)}.

The simulation of S and ¥ is readily available from Rosifiski expansions and the expectation in
equation (70) can be consistently estimated by a sample average across simulations.
The natural question to ask is which Q € M’ should be used for pricing? Since some parameters are
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common under the historical and equivalent measure, it is only natural that the selection mechanism of
the EMM should incorporate data from both the spot and the derivatives market.

The techniques and results generalize to the superposition of independent OU-type processes for
which there is big empirical support.

Frank Critchley (The Open University, Milton Keynes)

It is a pleasure to welcome such an original and stimulating paper. My comments all relate to the choice
of model or model checking. As n is so large, we might hope to have plenty of empirical information
with which to estimate accurately, and then to choose between, alternative models that have been
confirmed as well fitting. However, major complications arise due, in particular, to

(a) the lack of an explicit parametric likelihood,

(b) (possibly long-term) dependence in the data,

(c) macroeconomic announcements (Section 5.1) and
(d) the possibility of a change in model over time.

In these regards, we note the authors’ comments in Section 5.4.3 on the detrimental effects of inliers,
observe that one entry point for the literature on influence in time series is Bruce and Martin (1989) and
wonder the following in the context of this paper.

(i) What overall modelling approach is more appropriate here? Is the loss of efficiency due to (a)
entirely bad news? Efficiency and ‘rigidity’ (proneness to observations exerting unduly large
influence) are opposite sides of the parametric modelling coin. Especially in view of (b) and (c),
could (a) even be viewed positively in so far as it encourages adopting an overall modelling
strategy which, while recognizing the strong appeal of the parametric approach, includes appro-
priate components of semiparametric (as in Section 5.4.3) (conceivably nonparametric) modelling
as a guard against unduly influential cases?

(i1) With reference to superposition (Section 3) and its implementation in, especially, Table 2 of
Section 5.3, is there a non-identifiability problem between the integer m and possibly zero weights
w,? Is inference about zero weights possible? How can inference on m be made?

(iii) How can appropriate auxiliary models be chosen in indirect inference (Section 5.4.6)? What
guiding principles apply? Might a sequential empirical approach be helpful, in which several such
models are used in turn with diagnostic feed-back at each stage?

(iv) What is the scope for residual and influence analysis? How tractable are these analyses here? In
particular, can an effective form of inlier or outlier detection be developed?

(v) Could (systematic) subsampling, such as the four-way split introduced in Section 5.1, be developed
as a general diagnostic tool? Alongside the authors’ splits into non-overlapping time intervals,
which seem well suited to (d), might other types of split be useful? In particular, could some form
of cross-validation be helpfully developed?

Mark H. A. Davis (Imperial College of Science, Technology and Medicine, London)
Dealing with stochastic volatility is one of the most difficult and most important problems in financial
risk management, and I congratulate the authors on a major contribution to this area.

The authors evaluate their models in terms of the goodness of fit to a long series of FX data. It is also
relevant to consider the purposes for which the models will ultimately be used. There are three.

Marking to market

Large portfolios of underlying assets and derivatives must be revalued every day. Some of these will be
exchange traded, so the value is just the current market value, whereas the valuation of non-exchange-
traded derivatives requires a model. Since, however, model parameters are invariably ‘calibrated’ to re-
produce the known prices of exchange-traded options, details of the model are relatively unimportant —
any ‘smooth function’ will give essentially the same value.

Hedging

In addition to option values, traders need to know hedge parameters such as the famous Black—Scholes
‘delta’ to rebalance their books. In this context the ultimate test of a model is whether it leads to
superior hedge performance. This is very difficult to test: in admittedly limited simulations using
historical price data, I and colleagues at Tokyo—Mitsubishi International found it virtually impossible
to distinguish between the various popular methods of volatility forecasting on the basis of hedge
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performance. This may be related to the fact, discussed in Davis (2000), that successful hedging is quite
possible with the ‘wrong” model.

Estimating value at risk

The value at risk measures the risk of a portfolio by estimating quantiles of the return distribution, and
such calculations are a standard part of every bank’s risk management process. Of course the essence of
the value at risk is accurately capturing the lower tail of the return distribution, and this is where the
methods introduced in the present paper could have an enormous practical effect.

Robert Tompkins (University of Technology, Vienna)
First, I congratulate the authors on their work. I know it quite well, and it has been an inspiration to
our efforts in Vienna.

I have two comments. The first concerns the estimation of parameters for the models. The model itself
is elegant and rich, and we have had long discussions about the ability of having the jump processes and
the Lévy process combined with stochastic volatility. This allows analytic tractability and pricing in a
very rich class of models. However, no matter how rich the class of models, if parameter values cannot
be found for them, their applicability is limited. In Vienna (and also in Aarhus and Oxford), research is
examining Bayesian Markov chain Monte Carlo methods along the lines suggested in the paper. To
date, we have found it difficult to find solutions, but this research is ongoing.

My suggestion is to use another method for parameter estimation, which we have used successfully in
Vienna for a variety of stochastic volatility models where inference from maximum likelihood is difficult
(including special cases of models suggested in your paper). This approach is the simulated method-of-
moments approach (or a moment matching approach) suggested by Duffie and Singleton (1993). Recent
work by Andersson (1999) and Andersen ef al. (1999) has shown that this approach compares well with
traditional methods of maximum likelihood or quasi-maximum-likelihood methods for parameter
estimation of stochastic volatility models. Regarding your models, Sylvia Frihwirth-Schnatter in
Vienna is comparing our approach with the Bayesian Markov chain Monte Carlo approach that you
suggest. Preliminary results suggest that both approaches will yield similar parameter estimates. As a
starting-point, this might be helpful to use such a simulated method-of-moments approach and then
perhaps you could use other methods to refine the parameter estimation problem from that point.

The second issue concerns measuring and estimating the options value, the p-measure and the ¢-
measure. The difficulty in calibrating the model into actual option prices is that it could be very unstable
in terms of fitting the parameters. An interesting issue, which was been pointed out in Madan et al.
(1998), is the comparison between the models parameterized to the p- and the g¢-processes with
comparisons of the differences.

I would encourage two lines of work to be done. One is from ¢ to p, taking and fitting the option
prices and working backwards, and the other looking from p to ¢ to understand the nature of the risk
neutral adjustment. Obviously, there is an assumption of a particular martingale measure, and the
question is how sensitive that is to alternative martingale measure specifications.

The following contributions were received in writing after the meeting.

Fred Espen Benth (University of Oslo), Kenneth Hvistendahl Karlsen (University of Bergen) and Kristin
Reikvam (University of Oslo)
We congratulate the authors on an impressive and inspiring paper.

In our discussion, we would like to draw attention to some applications of the suggested model in
mathematical finance that were not mentioned by the authors. A major area in finance is portfolio
optimization, which has the purpose of understanding investment behaviour in a stochastic market (see
Merton (1971) and Hindy and Huang (1993)). Moreover, ideas and techniques from portfolio optim-
ization theory may be used in pricing derivative contracts in incomplete markets (see Hodges and
Neuberger (1989)), taking a completely different approach from the arbitrage theory used by the authors.

To reach realistic conclusions from the analysis of a portfolio optimization problem, we need realistic
models for the financial assets constituting the portfolio. From the standpoint of stochastic analysis, the
financial assets should be modelled by theoretically tractable processes as well. The standard model for
the asset price dynamics is geometric Brownian motion. Many extensions to these dynamics have been
suggested and analysed in the context of optimal portfolio theory, but none with striking empirical
properties like the present model.
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One of the basic techniques for studying portfolio optimization problems is the dynamic pro-
gramming approach, translating the stochastic control problem to the analysis of a Hamilton—Jacobi—
Bellman equation. This approach is only possible if the dynamics of the risky asset are described by a
Markov process. The suggested asset price model is a two-dimensional continuous time (diffusion)
process with a Markovian structure. Noteworthy, the subordinator driving the volatility dynamics leads
to a second-order partial integrodifferential equation.

As the authors say, the logarithmic returns from the assets are approximately normal inverse Gaussian
distributed. Simplified asset dynamics assuming independent logarithmic returns are given by the geo-
metric normal inverse Gaussian Lévy process (see Barndorff-Nielsen (1998)). Benth et al. (1999) have
studied a portfolio optimization problem where the risky asset is modelled by such dynamics.

It is an interesting question to extend the results in Benth ez al. (1999) to risky assets following the
dynamics suggested by the authors. We believe that their class of stochastic volatility models will lead to
new and interesting results in these types of financial applications.

P. J. Brockwell and R. A. Davis (Colorado State University, Fort Collins)

We congratulate the authors on their innovative and illuminating models (6) and (8), in which the
instantaneous volatility o*(¢) is taken to be a Lévy-driven Ornstein—Uhlenbeck process (i.e. a Lévy-
driven first-order continuous time autoregressive or CAR(1) process). To extend the range of achievable
autocorrelation functions, while preserving the non-negativity of the kernel fin the representation

(1) = F F(s) dz(\t + 5), (71)

the authors consider linear combinations, with positive weights, of independent Lévy-driven CAR(1)
processes. To extend this range still further, we suggest the use of second-order Lévy-driven continuous
time autoregressive moving average (CARMA(p, ¢) with p > ¢) processes with non-negative kernel.
Provided that the zeros A, . . ., A, of the polynomial a(z) = z" + a4 a, all have negative
real parts, the Lévy-driven CARMA(p, ¢) process with autoregressive polynomial a(z) and moving
average polynomial b(z) = by +biz+. ..+ b,,_lz”"l (with b;:= 0 for j > q) is defined (see Brockwell
(2001)) as x(#) = (by by. . . b,_1) x(#), where x is the stationary solution of

dx(f) = Axdr+(00...01)dz(s) (72)
and A is the matrix
0 1 0 0
0 0 1 0
A= :
0 0 0 1
4y —lp1 Ty —a

The process {x(7)} has the representation, analogous to equation (71),

0
x0=[ S0+, (73)
where
. 1 (> . b(N) 2 b(\,) exp(—A,s)
= —isN) 2 d\ = S L e T 4
f6) = 5- J,w exp(-inh) i) dA = 32 P SRS, (74)
J#r !
and the second equality holds only if A, .. ., A, are all distinct. From equation (74), necessary and

sufficient conditions for the non-negativity of a CARMA(2, 1) kernel with A; and A, real are b, > 0 and
by = b, min; |\;|. Of these processes, those whose autocorrelation functions are those of superpositions
of CAR(1) processes are those which satisfy the additional constraint, b, < b; max; |);|. This simple
example demonstrates the existence of a non-empty class of autocorrelations attained by CARMA
processes with non-negative kernel which may usefully extend the modelling flexibility of the super-
positions considered in the paper.
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The authors’ models allow considerable flexibility for modelling both the marginal distribution
function and the covariance function of the volatility process, overcoming restrictions in frequently used
(e.g. generalized autoregressive conditional heteroscedastic) models for financial time series. Their
tractability for calculations is also impressive. As Barndorff-Nielsen (2000) shows, there is a limiting
form whose autocorrelation function decays slowly like that of a long memory process. It may, how-
ever, be difficult to retain tractability and a parsimonious parameterization in using the limiting model.

Although modelling the dependence of the volatility process via the autocorrelation function is an
excellent starting-point, it would be interesting to see how well the models proposed capture the
dynamical dependence structures in the volatility process beyond those of second order.

Bent Jesper Christensen (University of Aarhus)

I would like to congratulate Professor Barndorff-Nielsen and Professor Shephard on this extremely
stimulating and important work. Over the years, finance researchers have assembled a list of stylized
features of empirical stock return (and related) series {y,}, say. Thus, although the serial correlation in
¥, is negligible, it is strong in y2 and |y,| (volatility clustering), to the point of (quasi-)long-range
dependence. The marginal distribution of y, is non-normal, exhibiting skewness and, in particular,
excess kurtosis, although y, approaches normality as the interval A over which the return is measured is
increased (aggregational Gaussianity). Finally, large negative returns y, < 0 tend to be associated with
more marked increases in return volatility than positive returns are (the leverage effect). The Ornstein—
Uhlenbeck stochastic volatility (OU-SV) model allows all these stylized features to be incorporated yet
retains analytical tractability.

Several points are worth highlighting. Firstly, dynamic properties and marginal distributions are
handled separately. Secondly, from Fig. 3 the normal inverse Gaussian marginal return distribution
provides a very precise picture of activity in the market-place. Minor discrepancies occur only in the
tails, possibly because of extreme events that would in any case be outside the model, and certainly in
regions where there is little information. Thirdly, given the repeated findings of generalized auto-
regressive conditional heteroscedastic GARCH(1, 1) behaviour in the literature, consistency with the
OU-SV model (Section 4.2.1) is important. Finally, the only equally explicit SV option pricing formulae
rely on Wiener-driven square-root SV processes. The wide possibilities for alternative marginal volatility
laws (theorem 1) in the Lévy-driven OU-SV model should become important.

The remaining concerns relate to the fine structure of the model proposed. The leverage effect is
captured by letting volatility innovations into the price process. However, the economic argument
(increased risk of defaulting in a levered firm) would have causality run in the opposite direction, with
drops in price leading to increases in volatility. This suggests the model

dx*(1) = {pu + 821} dt + o(r) dw(?), (75)
d[log{c*()}] = =X log{c*(1)} dt + dz(\1) + p dw(?) (76)

with p < 0 as an alternative to equations (1) and (8). The relationship between the alternative models
would be of interest. Similarly, Figs 1(b) and 1(c) show that in the OU-SV model the volatility jumps
up sharply, then declines gradually. Clearly, the correlogram, the non-linear least squares objective
function and related objects are not sufficient. The empirical foundation of this asymmetry between the
rises and falls in volatility is an exciting topic for future research. Finally, the multivariate extensions at
the end of the paper are of key interest for practical portfolio management, but a related area of
importance is the empirical analysis of options. Here, the relationship between implied volatilities from
option prices and the integrated realized volatilities is of interest.

Petros Dellaportas (Athens University of Economics and Business) and Emma J. McCoy and David A.
Stephens (/mperial College of Science, Technology and Medicine, London)

We would like to congratulate the authors for a very stimulating paper. It is of particular interest to
people who operate in discrete time stochastics to investigate whether the ideas of the paper provide a
framework for new time series models. We are currently investigating the possibility of deriving discrete
time long memory volatility models that are more flexible and tractable than those currently available in
the literature (see, for example, Baillie (1996)). Following the ideas of Section 3 and of Barndorff-
Nielsen (2000), we have been working with a model in which long memory volatility is achieved by just
considering volatility as an autoregressive AR(1) process with coefficient o and —log(«) distributed as a
gamma density. This appears to facilitate a Markov chain Monte Carlo implementation and provides an
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alternative to the models produced by Ding and Granger (1996) and Bollerslev and Mikkelsen (1996).

We have two questions: first are the components in the superposed models developed in Section 3
genuinely identifiable from a single sample of data? We suspect not. Second, is the move to continuous
time motivated by anything more than a requirement for coherent aggregation properties and, if so,
are the benefits of this step outweighed by the estimation and computational difficulties that are
encountered? Truncation of series representations of Lévy processes and subsequent approximations of
stochastic integrals, in any case, essentially represent a discrete approximation to the continuous mod-
el. Is it possible to resolve this problem in a formal decision theoretic framework, where the effect on
the decision to be made (option pricing, hedging etc.) is investigated for the model and its discrete
approximation?

Francis X. Diebold (University of Pennsylvania, Philadelphia)

Barndorff-Nielsen and Shephard have produced a novel and important paper. In contributing to the
discussion, I shall focus on the specification of the marginal distribution of volatility, temporal aggre-
gation and the link.

On the marginal distribution of volatility

Separating the marginal distribution of *(¢) from its dynamic structure is novel and welcome. It forces
us to think about the marginal distribution of volatility, which is rarely done despite its importance for
financial applications. Barndorff-Nielsen and Shephard advocate the use of a generalized inverse
Gaussian (GIG) distribution for the marginal. However, recent empirical work finds that the log-
normal distribution is a good approximation to the empirical variation (Andersen et al., 2001a, b).
Moreover, log-normality is often implicitly assumed in traditional theoretical developments, as for
example when working with geometric Gaussian Ornstein—Uhlenbeck volatility processes, presumably
in part because log-normality is viewed as realistic. What, then, is the relationship between the GIG and
log-normal distributions? Of course all our models are abstractions and approximations, and the ‘real
world’ is neither precisely GIG nor precisely log-normal, but I would at least like to know how good an
approximation the GIG distribution could provide if the world were truly log-normal.

On temporal aggregation

Barndorff-Nielsen and Shephard note that, under conditions, returns generated from their models con-
verge to normality under temporal aggregation, which is desirable because convergence to unconditional
normality is observed in financial asset return data. In long memory stochastic volatility environments —
obtained for example by their clever superposition argument— one of those conditions would have to
be H< 1 (ord< % in the notation of fractionally integrated autoregressive moving average modelling),
because if H > 1 the variation would have infinite unconditional variance, which presumably would
preclude the possibility of Gaussian central limit theorems for temporally aggregated returns. This
would case doubt on the estimates of H > 1 that sometimes occur in empirical work: financial asset
return volatility dynamics may involve long memory (H > 0), but H <1 must hold if temporal
aggregation to normality is to be respected. The argument parallels that of Diebold and Lopez (1995),
who noted that the infinite unconditional variance implied by inverse generalized autoregressive
conditional heteroscedastic conditional variance dynamics cannot be consistent with convergence to
unconditional normality under temporal aggregation.

On the link

In a sense, log-normality fits zoo well, in that log-normality of the empirical variation appears approx-
imately preserved under temporal aggregation (Andersen et al., 2001b), despite the fact that a sum of
log-normal distributions is not log-normal! This needs to be addressed in future research that invokes
log-normal volatility. The obvious related question relevant to the present paper is whether GIG
volatility is preserved under temporal aggregation, and whether the properties of temporally aggregated
GIG volatility match those of the empirical variation of temporally aggregated returns data.

Sylvia Friihwirth-Schnatter (University of Business Administration and Economics, Vienna)

Firstly, the authors are to be congratulated on one of the most stimulating papers I have read in recent
years. My remark concerns estimation based on the likelihood function and Bayesian methods. The
problem is that the conditional distribution f(y,|o>, 1, 8) of the observed returns y, depends on the
unobservable integrated volatility o2. As is common for such incomplete-data problems, the authors
introduce latent variables X,
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X = (z(\A), . . ., z(ATA), 6*(A), . . ., *(TA)),

and carry out (approximate) Bayesian inference for the augmented parameter vector. X results from
discretizing the continuous time latent processes z(r) and o>(¢) at the observation times 1 = A, . . ., TA.
Although this is a natural choice in the light of equations (3) and (7), the problem is that the dlstrlbutlon
f(X10) has no simple analytical form.

I shall show that in the special case of a volatility model of Ornstein—Uhlenbeck type with gamma
marginal law Bayesian inference via Markov chain Monte Carlo methods is possible under an alter-
native parameterization of the latent processes z(f) and o°(¢). For this model the background driving
Lévy process is a compound Poisson process with N jumps at times 7, . . ., Ty, where the interarrival
times 7; — 7,_; are independent and identically distributed (IID) exponentlal E(v), and the jump sizes
Ji, . .., Jy are IID exponential £(a). For this process a natural tlmmg is to take the jump times ¢ = 7,
T, . . ., Ty rather than the observation times to describe z(7) and o*(7) leading to the definition of the
following latent variables:

X=N,T1s o os s 15 -+ o Iy)-

Figs 10 and 11 illustrate the differences between these two types of parameterization. Under the new
parameterization the prior f(X|0) has a very simple analytical form:
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Fig. 10. Choice of X suggested by Barndorff-Nielsen and Shephard
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J&X10) =f(m, ..., IN) fUrs - o ININ, @) f(N|v, A).
Here the number of jumps N follows the Poisson distribution P(AvTA), and, conditional on knowing N,
the jump sizes J;, J5, . . ., J, are [ID &£(a), whereas the distribution of the jump times 7, . . ., 7y is the
distribution of the order statistics of N random variables IID U[0, TA]:
N!
Ty o - Ty|N) = .
S vIN) A

We are working out the details of a Markov chain Monte Carlo sampler based on these results within
the Viennese collaborative research project ‘Adaptive information systems and modelling in economics
and management science’ (Frihwirth-Schnatter and Sogner, 2001). To sample X which is a quantity of
variable dimensionality we are currently using the reversible jump Metropolis—Hastings algorithm of
Green (1995), whereas an ordinary Metropolis—Hastings algorithm is used for joint sampling of the
remaining model parameters.

Valentine Genon-Catalot (Université de Marne-la-Vallée) and Catherine Larédo (Institut National de la
Recherche Agronomique, Jouy-en-Josas, and Université Paris VI-VII)

We congratulate the authors for this very stimulating paper. Ornstein—Uhlenbeck (OU)-LevVy processes
are among the recent models proposed for modelling stochastic volatility. They have many interesting
properties that are put forward and proved here. This motivates the reader to use them in both finance
and other applications. For our part, we have studied models where the volatility is a positive diffusion
process. We compare below these two classes of models.

State space
Both models can produce processes with positive values.

Stationarity

Conditions are well known for diffusions. They are proved for OU-Lévy processes (with a self-
decomposability condition on marginal densities). This restricts the set of possible marginals. The
generalized inverse Gaussian processes GIG(v, 6, ) discussed in Section 2.3 are also possible marginals
for diffusions

dX, = do? = b(X,)dt + a(X,) dB;:

(a) extended Cox—Ingersoll-Ross (CIR) diffusion —a(x) = x'/?and b(x) = MNB —x+n/x)with A >0,
n>0;

(b) extended bilinear — a(x) = x and b(x) = A(8 — x — nx?); A > 0, A3 > 0;

(c) bilinear diffusion—a(x) = x and b(x) = A(8 — x) with A5 >0, A > —%;

(d) CIR diffusion—a(x) = x'/* and b(x) = \(8 — x) with 3 > 0, A3 > 1.

Correlation structure

For OU-Lévy processes the only form is exp(—A|u|), leading the authors to superimpose independent
OU-Lévy processes, thus losing the Markov property. Mean reverting diffusions have the same
correlation.

Transition densities

Both models are Markov models. However, in this respect they stand apart. For diffusions, transition
densities are quite intractable whereas they are explicit and easy to simulate for OU-Lévy processes.
This is a strong advantage.

Integrated volatility (o2)

The integrated volatility process plays a key role in the likelihood of the observations (y, . . ., y7). As
far as the exact distribution of (o7, . . ., 03) is concerned, there is no improvement with OU—Lévy
processes, but an exact simulation is possible whereas this is impossible with diffusions (except by using
Euler schemes). This seems to us very positive, although not used in the paper.

We have very much appreciated the probabilistic contribution, but less the statistical one. Only
statistics based on marginal distributions and correlation structure are developed. Therefore, they
cannot distinguish between the two classes. Studying the exact likelihood of the observations presents
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the same complexity in both cases. Clearly, this is a difficult problem that we ourselves have been
confronted with (Genon-Catalot et al., 1999, 2000).

Clive W. J. Granger (University of California at San Diego, La Jolla)

Financial time series currently face some choices that will eventually become vital elsewhere in eco-
nomics: Gaussian or not; linear or not; continuous time or discrete; possibly equal interval; time units?
The present paper balances between these divides and illustrates the difficulties encountered in moving
across the divisions and is to be particularly welcomed for introducing a new and flexible class of
distributions to describe the empirical distributions of returns.

Statisticians use the Gaussian distribution as their base-line. Although the present paper emphasizes
the theoretical and empirical importance of non-Gaussian distributions, it continues to use normal-
based concepts. For example, it considers a ‘positive measure of volatility’ above equation (2) but uses
the usual notation for the variance. Of course the variance is a widely used measure of dispersion, being
especially useful for the Gaussian distribution, but other appropriate measures exist for other distri-
butions, such as the expected absolute deviation for the double-exponential distribution, as mentioned
later in the paper. Similarly the correlation is not necessarily the best measure of dependence for non-
Gaussian distributions and linear forecasts are certainly not the best way to measure the extent of
forecastability.

I applaud the attempt to link the continuous time theory with the high frequency (5-minute) discrete
time data but feel that the link is still tenuous: the theory does not satisfactorily explain the main
features of the data, the distribution shapes shown in Figs 2 and 3 and the ‘long memory property’
illustrated in Fig. 5, both known with daily return data. A satisfactory explanation of the property can
be constructed by using a process with breaks in the mean and this could certainly be embedded in the
Ornstein—Uhlenbeck model. Some further thought is required to bridge the continuous to the discrete
time gap. It is difficult to think of realistic decisions that can be made in continuous time but not at 5-
minute intervals or that the empirical results would change with a smaller interval.

The very large data sets found here make hypothesis testing virtually impossible: any two models will
be ‘significantly different” and it is very difficult to have a precise null hypothesis that is not strongly
rejected. It is extremely unlikely that any model, linear or not, will have perfectly white noise residuals.
This whole area is likely to remain an exciting one for statisticians and this paper suggests plenty of
interesting topics.

J. E. Griffin and M. F. J. Steel (University of Kent at Canterbury)

We take this opportunity to congratulate the authors on an impressive paper, demonstrating the
potential of Ornstein—Uhlenbeck (OU) processes in modelling high frequency financial data. The paper
is most explicit about the theory of OU processes and the analytic tractability that they provide when
used to model volatility processes. Empirical issues are less deeply explored, and, in particular, no
formal likelihood-based inference is conducted.

In this comment we shall focus on formal inference with these models, cast in a Bayesian framework,
exploring the suggestion provided in Section 5.4.2 in detail. In particular, we use the parameterization in
terms of the shocks {r,} and assume an OU process for the volatilities o(¢) with ' (v, o) marginals. In
this case, the series representation is finite (see equation (32)) and no truncation is required to sample
from the volatility process.

We analyse daily changes in the Standard and Poors 500 stock price index over the years 1980 until
1987 (T = 2023). The same prefiltered series was used by for example Jacquier et al. (1994). Proper, but
vague, priors are used throughout. The Markov chain Monte Carlo scheme is simplified by analytically
integrating out the parameter v. A Markov chain Monte Carlo sampler on (u, 3, a, A, my, . - ., 0y, °(0))
is then implemented, where values for 6*(0) are drawn from the prior marginal process.

Fig. 12 graphs the posterior mean values for the volatilities o2, based on taking every 10th value from
a chain of 50000 draws after a burn-in of 5000. Comparing these posterior means with the actual data
clearly indicates high mean volatility in periods of large fluctuations. Posterior standard deviations for
the volatilities are roughly a third of the means.

We feel that this testifies to the feasibility of formal likelihood-based inference in the context of
stochastic volatility models based on Lévy-driven OU processes. Extensions to superpositions of OU
processes, non-gamma marginals and the inclusion of a leverage effect should be quite feasible.

David Hobson (University of Bath)
Barndorff-Nielsen and Shephard propose a novel class of models for stochastic volatility which have the
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Fig. 12. Posterior volatility means and data

nice interpretation that volatility shocks, which could be thought of as arrivals of new information,
happen in discrete packets. These models have the useful property that the asset price is continuous, and
that the integrated squared volatility is a tractable random quantity. The integrated squared volatility is
a fundamental quantity in the Black—Scholes formula and derivative pricing.

For plain options the purpose of models is not to price derivatives (prices are determined by the
market) but instead to explain and predict observed biases. For example two stylized facts about call
prices are that the Black—Scholes implied volatilities exhibit ‘smiles’ and ‘skews’.

Stochastic volatility is a potential explanation for the smile effect. In this context the precise model
class (generalized autoregressive conditional heteroscedastic, autonomous diffusion or Barndorff-
Nielsen and Shephard) is rarely important; once calibrated many models are likely to exhibit qualitat-
ively similar behaviour. The tractability of the authors’ model is a highly desirable feature, but the ability
to explain smile effects is unlikely to be grounds for the choice of one specification of background-driven
Lévy processes above another; the simplest choice may be most appropriate.

Skews in implied volatility can be explained by leverage effects. There are two standard ways to
incorporate leverage into models: first by making volatility a decreasing function of the price level and
second by using the same sources of uncertainty to drive both the volatility and the price processes.
Barndorff-Nielsen and Shephard choose the second approach, but since their volatility is driven by a
process with jumps this means that the price process now also has jumps. Thus the inclusion of a
leverage term has the undesirable property that it completely changes the character of the price process.
Is there any way of incorporating leverage such that tractability is preserved but such that the price
remains a continuous process?

Jens Ledet Jensen (University of Aarhus)
The authors present a very interesting class of models. In my comments I shall concentrate on questions
related to the interpretation of data.
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The use of stochastic volatility models raises some questions within the field of inverse problems. The
fundamental question is how much do the data tell us about the underlying volatility process? Can we
distinguish between the models used here and, say, a diffusion-based model for ¢? Even the much
simpler problem of determining the marginal distribution of o(7) is quite difficult. Experiences with
similar data show that a distribution concentrated in five points, say, gives a fit which is comparable
with the use of an inverse Gaussian distribution. Thus an alternative model could be a hidden Markov
model with a small number of states. The methods discussed in Hartvig ez al. (2001) could be used here
to investigate the variability in the possible distributions of o(z).

Turning to the second aspect of the modelling, namely the correlation structure, I again wonder how
much the data actually tell us. How do we distinguish between the Ornstein—Uhlenbeck models used
here with a correlation very close to 1 and a description in terms of a slowly varying trend (or a
piecewise linear process)? The latter is somewhat easier to understand intuitively. Can we use the ability
to predict future volatility to distinguish two models? Also, more fundamentally, it seems of interest to
ask the question whether the volatility is locally constant. In Jensen and Pedersen (1997) an initial
attempt is made to model similar data from the point of view of a slowly varying trend. A piecewise
constant or piecewise linear process can be modelled easily by a hidden Markov model and the analysis
will then proceed using the Kalman filter technique.

Finally, I wonder whether the intraday standardization introduces some extra correlation. Can the
intraday variation somehow be explained by covariates?

M. C. Jones (The Open University, Milton Keynes)

This is clearly an excellent paper. I have just one small point. Should I be worried that stochastic
volatility models involve mixing a normal distribution whose mean is of the dimensionally incorrect
form p plus [ times the variance rather than u plus [ times the standard deviation?

A. J. Lawrance (University of Birmingham)

The illuminating presentation at the meeting justified the Royal Statistical Society’s tradition that it is
often good to attend the meeting before reading the paper, not to mention the associated social benefits.
Technically, this paper is a tour de force which I much admire for its desire and achievement of
tractability. The authors refer to financial matters and I would have liked more exemplification; mainly
they refer to logarithmic returns and think of their models as a more statistically realistic replacement
for geometric Brownian motion. There is mention of options and their pricing, but how many of us
make use of these rather esoteric assets? What we may have is a modest or otherwise financial portfolio
in a limited number of stock-market assets. The behaviour of their prices over time is our concern and
these might be modelled by the authors’ non-Gaussian Ornstein—Uhlenbeck models. Then a natural
question is to consider whether a form of the Gaussian-based mean—variance portfolio analysis
originated by Markowitz might be developed to assist investment decisions. Financial risk would no
longer be described by the variance and so ideas of optimality would need to be reformulated in other
more probabilistic ways; they would necessarily involve aspects of the behaviour of joint non-Gaussian
Ornstein—Uhlenbeck processes. This point just serves to reinforce the authors’ comments that there is
plenty of room for further development of their work, perhaps in ways which will assist those modestly
concerned with ‘personal finance’ rather than ‘mathematical finance’. One small technical comment
based on recent experience—1I think that the authors should be cautious if statistically using auto-
correlations of squares with returns which have not been adjusted to zero mean. It is true that they will be
0 for independent processes but their use as a measure of non-linear dependence includes a level effect.

Anthony W. Ledford (University of Surrey, Guildford)
The modelling approach developed by the authors provides a novel extension to current stochastic
volatility (SV) methodology and yields a flexible probabilistic framework within which analytic results
are often tractable. From a statistical estimation perspective, though, the framework is less tractable
and has significant computational difficulties that so far have prevented exact likelihood or inference
based on Markov chain Monte Carlo methods from being undertaken routinely. Given this, it is not
clear what advantages the suggested framework currently offers for applications. Resolving these
estimation issues will be key in widening the appeal of these models and furthering their use by
practitioners. Somewhat related to this, diagnostics for both model selection and assessing model
adequacy are required, as are extensive analyses of simulated and real data sets.

The underlying assumption that volatility is driven by a Lévy process with positive increments has
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conceptual appeal and clear interpretability as a model for the effect of fast breaking news. Although
discontinuities are allowed at this latent level, the model adopted for most of the paper assumes
continuity at the observation level. Is this for convenience or because asset prices are actually con-
tinuous? More generally, it is routinely assumed in SV modelling that the observations have conditional
Gaussian distributions. Is this assumption worth relaxing? If it is then how is the observation level
stochastic differential equation affected?

The log-density plots shown in the paper allow the behaviour in the tail to be examined informally.
Statistical extreme value methodology provides additional tools for this and is playing an increasingly
important role in both the theory of financial modelling and its application in financial risk control. See,
for example, Embrechts et al. (1997). In contrast with the approach adopted by the authors, which is to
model the observed discrete time process throughout the bulk and tails of its distribution by using an
underlying continuous time model, most (but not all; see Leadbetter et al. (1993)) extreme value
methodology is discrete time based and focuses on tail properties alone to reduce the possibility of bias
when inferences relating to extreme events are required. The resulting marginal distributions and
dependence measures are different from those which are relevant for describing the overall process. For
details, see Leadbetter et al. (1983), Davison and Smith (1990), Leadbetter (1983), Ledford and Tawn
(1997) and Coles et al. (1999). Quantifying the extremal properties of the models proposed remains an
area for further research.

N. N. Leonenko (Cardiff’ University)

Ole Barndorff-Nielsen and Neil Shephard have written an excellent paper on Lévy-driven Ornstein—
Uhlenbeck (OU)-type processes and their applications in financial econometrics. I have two comments
on this stimulating paper.

Construction of stochastic volatility processes with long-range dependence

The idea (Section 3) of using the superposition of non-Gaussian OU processes to construct tractable
stochastic volatility (SV) models with long-range dependence (LRD) or quasi-LRD is a very good one.
Similar arguments have been used recently by Oppenheim and Viano (1999) and Igloi and Terdik
(1999). An alternative SV continuous time model with LRD and non-Gaussian marginal distributions is
discussed in Taqqu (1979). This is referred to as the Gaussian subordination model. The non-Gaussian
marginal distributions can be obtained by the use of non-linear transformations of Gaussian processes
with LRD. Other classes of SV processes with given marginal distributions and LRD can be con-
structed. The bivariate densities of these processes have diagonal expansions (see Anh and Leonenko
(1999) and the references therein). In particular, there is a class of stochastic processes with x> marginal
distributions and LRD. However, a natural mathematical object to describe LRD is the fractional
operator (see Rosenblatt (1976), Chambers (1996) and Leonenko (1999)). This is in contrast with the
approaches in which LRD is obtained from the noise term (see Comte and Renault (1996)) or by
randomization of the regression coefficient in OU processes (see Barndorff-Nielsen (2000)) or via
random initial conditions in deterministic partial differential equations (see Woyczynski (1998),
Leonenko (1999) and Anh and Leonenko (1999)). Hence, if we can obtain LRD from the fractional
derivatives in the fractional version of the Langevin equation (see Anh et al. (2000)) or the Langevin
equation with delay (see Inoue (1993)), then we may use the noise term to represent other effects such
as infinitely divisible distributions (the Lévy noise) or intermittency (see Anh et al. (2000)). Another
alternative to obtaining quasi-LRD approximations to stationary time series is discussed in section 6.4
of Golyandina et al. (2000).

Statistical inference
Barndorff-Nielsen and Shephard have presented an excellent survey of statistical methods for SV
models (Section 5). Nevertheless, they do not pay enough attention to estimation in the frequency
domain, which has considerable potential for non-Gaussian data if we can use not only the second-
order information (the second-order spectral densities) but also the higher order information (the higher
order spectral densities). Some results in this direction for discrete time stochastic processes have been
obtained by Leonenko et al. (1998).

Developing such alternative SV models and the corresponding statistical methods is certainly an
interesting area for future research.

Sergei Levendorskii (Rostov State University of Economics)
I would like to point out yet another possibility of analytically tractable modelling of non-Gaussian
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processes having mean reverting features, by either calculating the infinitesimal generator of a Feller
process obtained from a general diffusion process by subordination or explicitly defining the infinit-
esimal generator as a pseudodifferential operator with non-constant symbol; the process itself is
constructed by using the representation theorem for analytic semigroups. As an example of the second
approach, one can visualize the normal inverse Gaussian Lévy process with state-dependent parameters;
and to reproduce mean reverting features it suffices to make the skewness parameter state dependent.
Both constructions are studied in Barndorff-Nielsen and Levendorskii (2000). It is shown that processes
obtained by the first approach form a subclass of processes obtained by the second approach, and that
under realistic assumptions the generators differ little.

Approximate pricing formulae for European options are derived; they are as simple as the corres-
ponding formulae for the normal-inverse Gaussian Lévy process. Similarly, we can try to derive
approximate formulae for barrier options and touch-and-out options, i.e. options which pay a fixed
amount when the strike price level is crossed from above (down-and-out put option) or below (up-and-
out call option); these possibilities are currently under investigation.

Benoit B. Mandelbrot (Yale University, New Haven)

The authors aim for two central features of financial price changes that I discovered in the 1960s: far
from being Gaussian and independent, price changes have long tails and an infinite span of dependence.
Being pleasantly surprised to be asked to comment on this paper, I regret to say that I see little purpose
or merit to it.

To model prices, I proposed parsimonious models based on ‘dilation invariances’, first for long tails
and dependence separately, then (Mandelbrot, 1997) by using multifractals to combine both features.
As is supposed to be the case, the inputs are sparse, versatile and transparent. The outputs are rich and
in part unexpected. Easy computations agree with the facts (quantitatively and also visually) and open
new questions of direct concrete importance. The invariances, which of course remain to be justified,
involve intrinsic numerical invariants. These are quantities like the fractal dimension, the Holder
exponent and the intrinsic invariants of multifractals. Together, they gave for the first time a
quantifiable intrinsic meaning to the loose notion of ‘roughness’, which occurs widely but until then
could not be measured.

A popular counter-proposal formally represents non-Gaussianity by a mixture of Gaussian building-
blocks, and non-independence by a mixture of Gauss—Markov (Ornstein—Uhlenbeck) linear building-
blocks. This paper proposes a new family of building-blocks: of staggering and unmotivated com-
plication. They involve (via the Lévy measure) an infinite number of parameters: each is individually
tunable but nearly all correspond to nothing concrete, old or new. The difficulties in parameter
estimation are sketched but a good fit, even if achieved, would bring no clear benefit.

This new proposal also fails to represent at least one essential class of financial prices with which I am
familiar. But I do not think that a further generalization is necessary, or that it is useful to put on the
record my reactions to diverse details of the paper.

A more general issue arises. I watched many models when they were struggling to take off; all the
successful ones started with a light initial load. Among those initially weighted by an unorganized
infinite mixture, some involve statistically acceptable representations but not one has left the ground.
Parsimony always pays; early in a theory, it is essential.

Nour Meddahi (Universitée de Montréal)
The authors are to be congratulated on a stimulating and a comprehensive paper on volatility
modelling. I have some brief comments.

Time series dependences and marginal distribution

One of the major contributions of the paper is the separation between the marginal distribution of the
volatility and its dynamic structure. This is very important in volatility modelling because several
models in the literature (e.g. generalized autoregressive conditional heteroscedastic) imply that, with the
empirical value of the persistence of the volatility, the fourth moment of the returns is not finite. It is
important to note that this separation result is general and can be considered Brownian-type stochastic
volatility (SV). More precisely, Chen et al. (2000) argue that a more parsimonious approach for
continuous time modelling is to specify the unconditional distribution of the process and the diffusion
parameter. Therefore the separation between the marginal distribution and the dynamics structure
holds. It is worthwhile to note that we do not observe the volatility but a noisy version (squared return).
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Therefore we cannot estimate directly the marginal density of the volatility. Finally, it is not necessary
to assume that the positive noise which explains empirically 90% of the variance has a self-
decomposable characteristic function.

Conditional information

The daily integrated volatility :ﬁl) A o(u) du is the variance of the daily return given the information
J, = olo(tA), x*{(r — 1)A}, 7 < n] (when (i, 8, p) = (0, 0, 0)). However, in practice, we have only
(in the best case) J,_; = o[o{(T — 1)A}; x*{(7 — 1)A}, 7 < n]. Therefore the volatility of interest is
var(y,|J,_;) which is an affine function of o*(n — 1). Indeed, this volatility is a filter of the integrated
volatility. However, if we are interested in smoothing the volatility or on option pricing (by simulation),
then the integrated volatility is the volatility of interest (see Meddahi and Renault (2000a)).

The variance of the variance

A potential limitation of the dynamics of the volatility is that the variance of the variance is constant in
continuous time (but not in discrete time). This is in contradiction with the usual SV models (square
root or log-normal). The empirical implications are not clear. A potential alternative specification of the
volatility o in equation (4) is to say that o°(¢) = f{5°(¢)} where 6°(¢) is defined by equation (2) (the paper
adopts f(x) = x). This maintains the separation property but, in general, the autoregressive moving
average (ARMA) structure will not hold. However, if f(x) = x', i € N, then the squared returns are
ARMAC(, i).

Inference
As shown in Meddahi and Renault (2000b), integrable positive Ornstein—Uhlenbeck are SR—stochastic
autoregressive volatility models. Therefore, multiperiod moment restrictions (see Hansen (1985) and
Hansen and Singleton (1996)) can be derived for non-linear inference purposes. For instance, we have
for J=1:

E[y, — EA{1 —exp(—AA)} — exp(—=AA)yr |y, T < n—2] = 0.

In this equation, we can correct the heteroscedasticity of the squared returns.

Michael K. Pitt (University of Warwick, Coventry) and Stephen Walker (University of Bath)

We would like to congratulate the authors on a stimulating paper. We can, following Walker (2000),
obtain the error term explicitly in equation (13) of the paper for the gamma, I'(v, «), example,
illustrated in Fig. 1. Without loss of generality, we restrict ourselves to the I'(v, 1) marginal. Using the
notation of equation (13) of the paper,

(1) = exp(—A1) 6*(0) 4 exp(—Ar) e(\r),
where €(Af) is an independent mixture random variable. Explicitly,

e\) ~ Ga(z, 1),

1
zn~ POGa{V, W },

where z ~ PoGa(a, 8) means z|w ~ Po(wg™"), and w ~ Ga(a, 1). We obtain Pr{e(Ar) = 0} = exp(—v\o).
The conditional density of e(\f), given that it is greater than 0, is

1 oo 1
fé‘f>0(x) = m Zz::l Ga(x|z; 1) POG&{ZW, W }

We have found that this is very close to an exponential density when Az is small. The I" (v, 1) case shows
that Markov chain Monte Carlo techniques may be directly applied as we have an explicit one-step-
ahead density for o2|o>_,, in equation (7) of the paper. Efficient Markov chain Monte Carlo techniques
would require that blocks of variances are jointly proposed as moves. The smooth, in the parameters,
particle filter of Pitt (2000) can be used to provide maximum likelihood solutions to the more general
models considered in this paper. This may provide a unified approach to estimating models of the type
considered by Professor Barndorff-Nielsen and Professor Shephard, since it is only required that we can
simulate from the transition density o>|o>_, and evaluate the measurement density y,|o2: the same
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Fig. 13. Profile likelihood for the three-parameter gamma model: (a) simulated data set; (b) log-likelihood (v|«,
A); (c) log-likelihood (a|v, A); (d) log-likelihood (Alv, «)

requirements for the general auxiliary particle filter of Pitt and Shephard (1999). We can illustrate by
simulating a data set of size 3050 where o’|o>_, arises from the I'(v, 1) process with persistence
parameter A and y,|o> ~ N(O, Uﬁ/a). We take a unit sampling interval, o = 8.5, v =3 and A = 0.01
(comparing with the authors’ example in Fig. 1). In Fig. 13, we display the profile log-likelihood from
two simulations of the smooth particle filter. The three parameters are shown together with the actual
simulated data set (Fig. 13(a)).

M. B. Priestley (University of Manchester Institute of Science and Technology)

The authors have presented an extremely interesting paper, the mathematical aspects of which I found
very stimulating. I was particularly pleased to note that the authors develop their models in the more
mathematically elegant continuous time format rather than the discrete time format which has
dominated time series analysis over the past three decades. I do not, however, have sufficient expert
knowledge of the field of financial economics to be able to judge whether their models for stochastic
volatility are realistic and how well they compare with alternative models.

The Ornstein—Uhlenbeck (OU) model for o*(r) (equation (2)) seems rather restrictive since, as the
authors point out, o>(f) is then constrained to decay exponentially between jumps. To obviate this
constraint the authors then propose a more general model in which ¢?(¢) is the sum of a number of
independent OU processes. However, this generalization seems rather strange in that it raises the
problem of determining the value of m, the number of independent OU processes in the overall model.
(In the paper the value of m seems to be chosen in a rather arbitrary fashion.) Since the OU model is
essentially a continuous time autoregressive AR(1) scheme (with a non-Gaussian driving process) it
would seem more natural to consider instead a generalization to higher order AR schemes— these
would lead to processes with essentially the same forum of autocovariance functions as the three
generated by adding independent OU processes — of equation (33).

The crucial test of any model is how well it matches the data—as measured, for example, by its
predictive accuracy. Although the prediction of the original processes x*(¢) or y, may not be of great
interest within the context of financial economics it would, nevertheless, be interesting to compare the
predictive efficiency of the authors’ models with alternative models such as a model based on one of the
standard non-linear time series models for log{c?(7)}.
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Eric Renault (University of Montreal)

The paper proposes a new continuous time stochastic volatility (SV) model for financial asset returns
but it keeps the general framework termed ‘stochastic autoregressive volatility’ (SARV) by Andersen
(1994): up to extensions by superposition or subordination, the volatility dynamics on any time interval
h are captured by the stationary autoregression

(1 + h) — 0 = exp(= M) {0*(1) — o} + v,(t + h), A>0, Elv(t+h)/c* (1), 7 <t]=0.
(7

In this context, emphasis is cleverly put on Lévy processes with a self-decomposable marginal law, as
a necessary consequence of an assumption of independence between v,(r + /) and ¢°(¢). My comments
assess the relative advantages of alternative models in the SARV class.

For a fair comparison, it is first worth noting that some nice properties of the SARV processes are not
specific to the subordinators considered in this paper. In particular, general (semiparametric) SARV
modelling provides by definition a joint linear prediction of the return and the squared return (in so far
as the risk premium is linear with respect to o>(f)) and related characterizations of leverage effects
(Meddahi and Renault, 1996).

Although leverage effects are poorly captured by the popular generalized autoregressive conditional
heteroscedastic (GARCH) model since it adds to equation (77) the drastic restriction of perfect
correlation between v,(f + 1) and the squared innovation of the return process, it is extreme to replace
perfect correlation by an independence assumption between v, (¢ + 1) and o(7). Actually, it is sensible to
allow the conditional variance process to be conditionally heteroscedastic: in the square-root model
(Section 6.2.2) the conditional variance of o*(¢ + /) is proportional to o*(f), which is consistent with the
linear specification of the risk premium. Up to a linearization, this proportionality is also underpinned
by the popular log-normal SV model which, by directly specifying Gaussian autoregressive dynamics
for log{c*()}, exempts us from having to resort to non-Gaussian Lévy processes and opens the door for
more versatile models of superposition (Comte and Renault, 1996).

By forcing ¢*(f) to move up entirely by jumps, the subordinator SV model may lack flexibility. For
instance, any leverage effect will produce jumps in the stock price process; the two effects cannot be
disentangled. Moreover option prices will be strictly increasing functions of the underlying volatility
process which features jumps. The implied jump risk merits thinking about implementing the proposed
option pricing and hedging theory (see also Stute (2000)).

Overall, the framework of infinitely divisible (ID) probability distributions is well suited to volatility
modelling. ID distributions can be seen as limits of compound Poisson distributions, which is appealing
for simulation and economics interpretations in terms of flows of the arrival of information. But,
besides the model ;Z)roposed, we may keep more classical volatility models which also provide an 1D
marginal law of o7(7): gamma distributions (square-root processes), log-normal or inverse gamma
(continuous time limit of a GARCH(1, 1) process).

Jan Rosinski (University of Tennessee, Knoxville)

I would like to announce a new result (Rosinski, 2000) on stochastic series representations that was
motivated by the authors’ work and can improve the simulation of certain Ornstein—Uhlenbeck (OU)
processes. The practical use of series representations for simulation (Section 2.5) can be greatly facilitated
when the inverse of the tail mass of the Lévy measure has a closed form. However, quite often this is not
so; examples include the inverse Gaussian and a more general class of exponentially tempered stable
(ETS) laws. An OU process is said to be an ETS OU process if 6°(7) is a positive infinitely divisible
random variable with Lévy density of the form

u(x) = Ax > exp(—Bx), x>0, (78)

where o € (0, 1) and A, B > 0 are parameters. The inverse Gaussian law is the special case of the ETS
law with o = % The volatility process is given by

P

(1) = exp(=A1) 62(0) + exp(—A1) exp(s) dz(s) (79)
Jo

where z(¢) is the background driving Lévy process with the tail mass of the Lévy measure of z(1) given
by
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Wt (x) = Ax™* exp(—Bx), x>0 (80)

(Section 2.2). The volatility process is composed of two independent parts. The second part can be
simulated by the method discussed in Section 2.5 but the inverse W' of W' must be found
numerically. Because of the large number of terms needed to simulate for each time step, particularly
when « is close to I, the errors due to numerical inversions of W™ can accumulate substantially.
Another problem is with the simulation of ¢*(0), appearing in the first part of equation (79), whose
density is known only in a few cases of «, most notably, for a = % Simulation of ¢?(0) by the series
representations of Section 2.5 requires a very large number of numerical inversions of the function

00
U(x) = J Ar " exp(—Br)dr.

These difficulties disappear when we apply alternative series representations based on a random cut-
off of jumps of stable processes. Such representations hold for general ETS Lévy processes with Lévy
density

u(x) = AL|x| 7" exp(—Blx|), x#0.

As an application we obtain explicit formulae for both parts of o*(7). Let {¢;} be a sequence of inde-
pendent and identically distributed (IID) exponential random variables with parameter B, independent
of the other random sequences defined in Section 2.5. Then, in the notation of Section 2.5,

00

At
J exp(s) dz(s) £ > {(a,-a/A/\t)fl/‘l A e;} exp(Atr;). (81)
0 .

i=1

Let {v;} be a sequence c1>f IID uniform random variables on [0, 1], independent of all previous random
sequences. Put w; = e,0;'". Then

AO)E S (wa/ ) A, (82)
i=1

In conclusion, the stochastic series representations can be easily implemented in simulation of OU
volatility processes with ETS marginal distributions. In the inverse Gaussian case (a = 1), o*(0) can be
simulated directly but the use of equation (82) improves the previous method.

Ken-iti Sato (Nagoya University)

Professor Barndorff-Nielsen and Professor Shephard have made an important contribution to the wide
applicability of processes of Ornstein—Uhlenbeck type. It would be interesting to study theoretically the
class of processes described by equations (6) or (8). I shall make some comments on subordination and
self-decomposability.

The subordination that the authors are using in Section 6 is a much wider concept than the usual
subordination in the theory of stochastic processes. The latter means time substitution by independent
subordinators; here subordinators mean one-dimensional increasing processes with stationary indepen-
dent increments starting at 0. This was introduced by Bochner (1949); it transforms Markov processes
to Markov processes and Lévy processes to Lévy processes, as is expounded in Sato (1999). But the
subordination in the wider sense does not have this property.

Self-decomposability is a concept introduced by Lévy (1937) answering a problem posed by Khintchine.
It characterizes the class of limit distributions of normalized sums of independent random variables
satisfying the uniform asymptotic negligibility condition. See Loéve (1977, 1978). Another name for this
class is class L. Many distributional properties (such as unimodality and degree of smoothness) are
known in this class. See Yamazato (1978) and Sato and Yamazato (1978). Theorem 1 of this paper,
establishing the one-to-one correspondence between self-decomposable distributions and stationary
processes of Ornstein—Uhlenbeck type, was proved by Wolfe (1982) and Sato and Yamazato (1983). See
Sato and Yamazato (1984) for historical comments.

In view of the importance of self-decomposability expressed by theorem 1, the following remarks
should be of interest. In the case of subordination (in the usual sense) of Brownian motion, the
inheritance of self-decomposability from subordinators is known. This was proved by Halgreen (1979)
and Ismail and Kelker (1979). The same is true for strictly stable Lévy processes in place of Brownian
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motion. Recently I have extended this fact to Brownian motion with drift (Sato, 2000). But it is an open
problem whether an extension to (not strictly) stable Lévy processes is possible or not. A multivariate
extension of subordination and its connection to multivariate self-decomposability and stability are
discussed in Barndorff-Nielsen et al. (2000).

Stephen J. Taylor (Lancaster University)

Papers about the prices of financial assets are rare in the journals of the Royal Statistical Society,
although their influence is often significant. The empirical study by Kendall (1953) applied primitive
computational technology to what are now called low frequency data, to obtain the historically
important conclusion that stock price indices move like random walks. The superb and epic paper by
Barndorff-Nielsen and Shephard also makes a significant contribution to our understanding of appro-
priate models for the development through time of asset prices.

The theoretical analysis is impressive. The economic reasons for the existence of stochastic volatility
remain unclear, although the occasional announcement of relevant information and the psychology of
traders and investors must contribute to any satisfactory explanation. Certainly the background driving
Lévy process set-up in this paper, as illustrated by Fig. 1(b), is plausible and permits the jumps to be
associated with news announcements. The success of the authors’ framework is shown by the generally
satisfactory description of observed distributions and autocorrelations, as shown by Figs 3 and 5. The
implications of the theoretical models for finance researchers include interesting new ways to value
options, which will require assumptions about the risk premium associated with the unpredictable
jumps in the volatility process.

The paper makes remarkable progress towards explaining the empirical volatility dependence for all
timescales, with results for lags from 5 minutes to 100 days, as shown by Fig. 5. I note, however, that the
empirical autocovariance function has a local minimum at about 0.5 days and that the empirical values
are well above the fitted curve from 0.70 to 0.85 days (see Fig. 5(a), where it is also not easy to see what
happens for lags less than 0.1 days).

Taylor and Xu (1997) also investigated the Deutsche Mark—dollar exchange rate and presented the
first application of the quadratic variation estimator used to obtain Fig. 4(c). In that paper we observed
that intraday volatility seasonals reflect local time, which is not a simple shift of Greenwich Mean Time
because clocks go back and forth. Thus the single spike on Fig. 2(a) is surprising, because the market
opening in New York and the announcement of macroeconomic news occur at two possible Greenwich
Mean Time times depending on the season, winter or summer. We also showed for one year of data that
there is a statistically significant day of the week effect in the quadratic variation statistics. On average
these statistics increased monotonically through the week, probably reflecting the timing of macro-
€conomic news announcements.

Howell Tong (University of Hong Kong and London School of Economics and Political Science) and
Hailiang Yang (University of Hong Kong)

We congratulate the authors on a very timely paper. We would like to say a little about using the
Esscher transformation, introduced in Gerber and Shiu (1994), to option pricing. The advantages of this
approach are that it can deal with both continuous and discrete time models in a unified way and it
enables us to obtain a unique price even in the incomplete market case, where it is known that the
option price is consistent with the price calculated using the utility maximization framework. Theoreti-
cally, we can use Gerber and Shiu’s method for any model (including stochastic volatility models) as
long as we know the distribution of the underlying asset’s return. However, it is not easy to find the
distribution of the underlying asset return if the underlying asset price follows a stochastic volatility
model such as that in this paper. The paper uses the series representation to simulate the volatility
process. The price of derivatives is then obtained. A possible alternative approach to the option pricing
problem under stochastic volatility is to use the ‘random Esscher transform’ introduced in Siu et al.
(2001). There the random Esscher transform was introduced to deal with the risk measures for
portfolios containing derivative securities. Let F(x, f) denote the distribution function of the stock
return at time ¢. To capture the subject view and risk preference, the random distribution of X, is defined
via the random Esscher transform

L exp(O) Fidy
- M(®, 1)

F(x, t;0) =
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where M (0, t) denotes the moment-generating function of X, and ® is a random variable with a prior
distribution which represents the subject view and/or risk preference of the individual trader. For the
option pricing under stochastic volatility model, we must treat o rather than p as a random variable.

Alexander Yu. Veretennikov (Leeds University)
I have a comment and a question. In the first sentences of the paper linear models of volatility based on
Brownian motion are criticized because they only provide Gaussian processes with light tails.

Comment

I would like to draw attention to the fact that various non-linear Brownian models may be constructed
with explicit marginal stationary distributions, with arbitrarily heavy stationary tails, non-Gaussian,
and, finally, which mimic ‘long-range dependence’ despite the fact that they are Markovian. A wide
class of such processes can be described by an It6 equation

dv, = dB, + r h(v,) dt, for some v,

where r > 0 and A(v) = —sgn(v)(a + [v])*, a >0, « = — 1.

(a) If =1 < & < 0 then v, is ergodic and the stationary marginal density has subexponential tails.

(b) If & = —1 and r > 3 then v, is still ergodic and an explicit expression for the stationary density is
available: polynomial weak and S-mixing hold true and this imitates long-range dependence with
polynomial decay, and the stationary tails decrease with a polynomial rate depending on r.

(c) If @ > 0 then the tails are exponential or lighter.

(d) The Ornstein—Uhlenbeck process is included in the case o = 1 (if we take a = 0; note that a > 0 is
essential only if o < 0).

(e) Other classes with similar properties can be constructed with changes of function /4 near zero.

Question
Might this be useful for models of volatility?

S. G. Walker (University of Bath)
My comments on this fine paper are reserved for Section 2, and in particular Section 2.5. A general
representation of a Lévy process of the kind considered by Barndorff-Nielsen and Shephard has been
given by Ferguson and Klass (1972). Indeed, the main result of Section 2, formula (31), can be easily
derived from the work of Ferguson and Klass.

In Ferguson and Klass (1972) the Lévy measure is written as dN,(u) and

00

—log<EIexpr—ez(0}1)::J; (1 — exp(—0u)) dN,(u).

In the homogeneous case, dN,(u) = ¢t W(du), where W is as given by Barndorff-Nielsen and Shephard.
The representation of Ferguson and Klass (1972) for z(¢) on (0, A] is given by

20 = S0 1, < n())
i=1

where, as with Barndorff-Nielsen and Shephard, the {r;} are independent and identically distributed
from the uniform distribution on [0, 1]. In the homogeneous case, n,(v) = t/A and a; = A W(J;, 00),
where, as with Barndorff-Nielsen and Shephard, the {«;} are arrival times of a Poisson process with
intensity 1. Here W(u, co) = [ W(dx).

Consequently,

20) =S W a/ N It > M),
which leads to the expression (31) of Barndorff-Nielsen and Shephard.

Bas J. M. Werker (Tilburg University)
The paper discusses (superpositions of) non-Gaussian Ornstein—Uhlenbeck processes as possible
models for the volatility of financial assets. As the authors show, the models thus obtained are both
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empirically relevant (Section 5) and analytically tractable (or, at least, easily simulated; Sections 2—4). In
finance especially, tractability is important if a realtime implementation is to be achieved. This, then,
holds both for the estimation of the model parameters and the pricing of financial derivatives. I would
like to focus this discussion on the pricing of derivatives as considered in Section 6.2.

The authors show, in Section 6.2.1, that the leveraged stochastic volatility model does not allow
arbitrage. This result is established by showing that there is an equivalent martingale measure. How-
ever, this equivalent martingale measure is not unique (as in most stochastic volatility models) whereby
derivatives cannot be priced by arbitrage arguments alone. In Section 6.2.2, the authors propose to use a
specific measure for derivative pricing. This measure is, in the notation of Section 6.2.2, the equivalent
martingale measure Q that is ‘closest’ to the physical measure P. As the authors note, in case the
volatility process o is independent of the Brownian motion w in model (6), the law of the volatility
process o is the same under P and Q. A similar choice of equivalent martingale measure figures in the
Hull and White (1987) model.

Another interpretation of this specific equivalent martingale measure is obtained by noting that it
implicitly assumes that the risk in the stochastic volatility does not pay a risk premium, i.e. this risk can
be diversified away. Such an assumption is sometimes defended on economic grounds, but it is difficult
to maintain empirically. The empirical results in this direction have existed for a long time and are
discussed in detail in Guo (1998). Therefore, it seems more reasonable on empirical grounds to consider
the appropriate transformation to the equivalent martingale measure, as far as the volatility process
is concerned, as an empirical issue. A particularly simple characterization that allows for an estimation
of the empirically relevant equivalent martingale measure, using data on option prices, is given in
Melenberg and Werker (1999), which also shows how to handle the leveraged case.

Andy Wood (Nottingham University)

It is a pleasure to congratulate the authors on a very interesting and stimulating paper which I look
forward to studying in greater detail. For the moment, I only have a minor technical question. I was
puzzled by the fact that the final sum in expression (32) only contains a finite number of terms almost
surely, as a gamma process has an infinite number of jumps on any finite open interval (though ‘most’ of
these jumps will be small). On closer scrutiny, the Lévy density for the gamma process given at the end
of Appendix A.2 does not invert as stated in formula (25), which appears to explain the discrepancy.
Have I misunderstood something here?

The authors replied later, in writing, as follows.

We would like to thank all the contributors to the discussion on our paper. Many of the comments have
certainly advanced our understanding of Ornstein—Uhlenbeck (OU) processes and stochastic volatility
(SV). We have structured our reply by topic, going through alternative models, inference, Lévy
processes, option pricing and other issues.

Alternative models

Several of the discussants have pointed clearly to alternative models which share features, such as second-
order properties, with our OU-based volatility models. We mentioned in our paper some diffusion-based
alternatives and these are highlighted in the comments by Valentine Genon-Catalot and Catherine
Larédo, Eric Renault and Nour Meddahi. These diffusion alternatives are generally non-linear processes
with Gaussian increments, with the non-linearity forcing the process to be positive. Our approach is to
advocate linear processes with non-Gaussian increments for volatility. Although diffusions have many
advantages, only in the Cox—Ingersoll-Ross case (to our knowledge) is it possible to study the cumulant
functional of x*(7), o>*(¢)|c(0) easily analytically. This is the vital issue in option pricing theory. We
think that our models open up a new class of analytic option pricing models. This is studied, following
our initial work, by Nicolato and Venardos (2000) and Tompkins and Hubalek (2000b).

Eric Renault points out the work of Andersen on discrete time autoregressive volatility models. It is
clear that we should have referenced this important and related work. Of course moving to continuous
time changes the model structure very considerably as time aggregation means discrete time increments
to integrated volatility do not have an autoregressive structure (although instantaneous volatility does).
This point is made forcefully in the work by Meddahi and Renault quoted above. Professor Renault
worries that our OU-based model does not allow the conditional variance of volatility to be pro-
portional to the conditional mean. This fear is shared by Nour Meddahi. However, Fig. 6 shows that



Discussion on the Paper by Barndorff-Nielsen and Shephard 235

this is actually the case when we condition on returns, rather than on the unobserved instantaneous
volatility.

Peter Brockwell and Richard Davis make an interesting contribution, introducing an autoregressive
moving average type of Lévy-based continuous time volatility models. They give conditions on the
volatility process so that it is positive. We look forward to thinking about this process in detail. In a
sense their comment has answered one of the queries of Maurice Priestley. The other point that
Professor Priestley makes is that we should compare the fit of our model with alternative non-linear
diffusion-based models. This is surely right, although statistical fit is only one criterion for use. Another,
equally important, is that of tractability.

Sir David Cox makes an important point, that we are using a parameter-driven model (Cox, 1981)
and so are not really explaining volatility in terms of past data. Instead he suggests an observation-
driven model, derived via a Taylor expansion from a general non-linear autoregression. The resulting
model is autoregressive conditional heteroscedastic (ARCH) like. Such models are indeed appealing,
although the properties of observation-driven models are often difficult to discern. Further, they are
often difficult to manipulate when it comes to option pricing theory.

Frank Diebold makes some interesting comments about the marginal distribution of increments to
integrated volatility. He argues that his work on realized volatility suggests that it is close to log-normal
(LN). The LN distribution is self-decomposable (Bondesson (1992), pages 30 and 59-60; see also Thorin
(1977)) and so we could set up an LN-OU process. LN-OU processes have substantially heavier tails
than inverse Gaussian (IG)-OU processes, which has some attractions in the context of equity data. We
are currently working out the detailed implications of the LN—OU process and hope to report on it in
the future. Finally, although IG-OU processes do not temporally aggregate to being IG, calculations
suggest that the disagreement is mild (see Barndorff-Nielsen and Shephard (2001b)). We do not yet
know whether this is true for LN-OU processes.

Clive Granger points out that the non-normality in our models is built out of a normal distribution.
This is true, but the flexibility that is achieved with normal variance-mean mixtures (or, put another
way, with subordination of Brownian motion with drift) is extraordinary — allowing us to deal with, for
example, the double-exponential distribution favoured by Professor Granger in some of his recent
writing. We agree that our linkage with trade-by-trade dynamics is primitive and much work needs to be
carried out in this context. Finally, we share his concern about the role of hypothesis testing based on
huge data sets.

Benoit Mandelbrot dismisses our models as being extremely complicated. We shall leave it to the
reader to decide whether our linear volatility models are more complicated than Professor Mandelbrot’s
favoured multifractal processes.

Inference

Gareth Roberts and Omiros Papasiliopoulos productively focused on the gamma—OU volatility case,
reparameterizing the model into jump times and jump sizes. This approach is also independently
introduced by Sylvia Frithwirth-Schnatter. All three of these researchers then design Markov chain
Monte Carlo (MCMC) algorithms to sample parameters, jump sizes and times given the returns. This
can, of course, be carried out in various ways, with varying degrees of effectiveness. Their discussion
studies carefully several approaches. This is clearly an important and productive technique which is, in
principle, extendable to the superposition and multivariate cases. Further, the method works with any
OU process which has a background driving Lévy process (BDLP) with an integrable Lévy density, for
such BDLPs all correspond to compound Poisson processes. This is a wide class of processes. However,
it does not include cases, such as the IG-OU process, which do not have an integrable Lévy density,
which means that the BDLP has an infinite number of jumps in any finite interval of time, and so some
adaptation of the above procedure would be needed.

Professor Griffin and Professor Steel implement an MCMC algorithm via the series representation in
the gamma—OU case. We found this very interesting and hope that they will report their results more
extensively elsewhere. The comment of Mike Pitt and Stephen Walker was innovative. They suggested a
simulation-based approach to estimating the likelihood function for the SV model in the gamma-OU
case. This is based on a smooth particle filter which Mike Pitt has been developing. At the moment we
do not understand how this approach can be used in cases where the density of o2, z(nAA)|o>_,,
z{(n — )AA} is unknown (which is the case typically). We hope that Pitt and Walker will report this at
length elsewhere. Certainly their comments greatly interested us.

Petros Dellaportas, Emma McCoy and David Stephens have been studying long memory models by
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the superposition of discrete time AR(1) models. These can then be handled by MCMC algorithms.
This approach to long memory is certainly worthy of study. They asked us about the utility of the
continuous time modelling. This raises the mathematical difficulty of working in this area, but the
choice of A is basically in the hands of the econometrician nowadays as prices are mostly recorded in
continuous time. Hence basing the analysis in continuous time seems suitable. Further, one of our
wishes is to carry out option pricing of these models, which is most easily achieved via continuous time.

Both the above discussants and Enrique Sentana and Frank Critchley asked us about the identi-
fication of the superposition of OU processes. It is helpful in thinking about this issue to work with the
1G(6, v)-OU case, with

a1y =Y o (), where o7 (1) ~ 1G(6w;, 7)-OU,

=1

where the weights {w;} are strictly positive and sum to 1, while the corresponding damping values are
{\;}. To gain statistical identification it is necessary to order either the weights or the damping factors.
Under such a set-up the mean, variance and autocorrelation function identify all the parameters in the
model and hence this model can be estimated from data. It is this structure which we have recently been
using in Barndorff-Nielsen and Shephard (2000) to estimate these models in practice.

Valentine Genon-Catalot and Catherine Larédo express their disappointment that we did not manage
to estimate these models off non-second-order information. We share their concern and hope that
progress can be made in this area. Our recent work on realized volatility is aimed at improving matters,
but there is clearly still much to be carried out.

Enrique Sentana makes a series of points about the statistical basis of our estimation methods. They
are well taken and clearly some more work needs to be made in this direction. We have formalized some
of these ideas in Barndorff-Nielsen and Shephard (2000). Certainly indirect inference methods may be
useful in this context, particularly as generalized ARCH or quadratic ARCH based models seem such
obvious auxiliary models in this context.

Bent Jesper Christensen asks us about our leverage model, where he argues for a more traditional log-
volatility model with changes in the log-price appearing in the volatility process. Although this model
has much merit, it removes the linear structure of the process and so it becomes much less mathemati-
cally tractable. Although Professor Christensen is of course correct about the causal story he tells, in
terms of observables the two models can produce very similar effects.

David Hobson asks whether we can introduce a leverage effect which allows us to maintain the
property that log-prices have continuous sample paths. This would clearly be desirable from a
mathematical finance viewpoint. The issues are clearest when z(¢) is a compound Poisson process and
i = 3 =0. Then our model has

1 N(1)

x*(t) = J o(s)dw(s) + p 2} z;.

0 J=

We may ‘smooth’ this by modifying to

1t

N,
x*(t) = J o(s)dw(s)+p >z h(t — 7))
0 Jj=1
where 7; is the jth arrival time of the Poisson process N(7) and / is a non-negative continuous function
such that A(s) = 0 for s < 0, A(s) > 0 for s > 0 and i(s) — 1 for s — o0, i.e. we have a shot noise type of
behaviour.

Leévy processes
Nick Bingham makes a series of interesting points about Lévy processes. His work with Rudiger Kiesel
certainly sounds interesting and we look forward to reading it. Multivariate modelling is challenging
and stimulating. His point about quadratic variation is of course true; however, we have recently been
studying a finite sample version of it in Barndorff-Nielsen and Shephard (2000). The motivation for it is
in dealing with intraday data.

Like Professor Bingham, Professor Benth, Professor Karlsen and Professor Reikvam make very
interesting points about multivariate models. Our paper has only scratched the surface of this topic. We
know from informal discussions with Professor Benth that he has been thinking about portfolio theory
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in the context of our models, where the investor is faced with transaction costs. We look forward to
being able to read about this work when it is completed. Professor Christensen, Professor Lawrance and
Professor Sentana’s comments accord with our view that this is a vital topic.

Jan Rosinski’s new result on series expansion is highly interesting to us for it removes the requirement
to compute the inverse tail mass of the Lévy measure for many problems. In particular it covers the IG
case. We have been using this result in Barndorff-Nielsen and Shephard (2001c¢).

Ken-iti Sato makes some points of historical worth, whereas his new result on self-decomposability
and subordination of Brownian motion with drift and work extending subordination to the multivariate
case are of particular importance.

Option pricing

Elisa Nicolato and Manos Venardos briefly discuss their work on option pricing for our SV models.
This shows that the linear structure of the model means that analytic option pricing results can be found
for a wide class of distributions. In particular their result on the leverage case is particularly welcome.
This relates also to Robert Tompkins who discusses various estimation methods for these models via
option data. This may allow us to have a better understanding of the choice of equivalent martingale
measure (EMM).

Stewart Hodges’s wide-ranging discussion puts our work in context, and we thank him for this. His
comments about our choice of the EMM is of course correct. We hope that we shall eventually be able
to understand the choice of the EMM within the context of the choice of utility function. Work along
these lines is being carried out by Professor Benth and co-workers at the University of Oslo. We think
that this type of research is really important. Finally, Professor Hodges makes some interesting links
with the implied process models which have recently been used in the finance literature. It is surely the
case that we need stronger links to that approach.

Mark Davis discusses various areas where the option pricing theory based on our model could be
used. He argues that these models have their largest potential in the value-at-risk type of calculations.
This may be true, although we have yet to study these fields in any detail. However, his wise words are
surely helpful in guiding us.

Howell Tong and Hailiang Yang emphasize the importance of the Esscher transformation for option
pricing. This is a very convenient tool. However, from an economics viewpoint its choice seems some-
what arbitrary. As we mentioned above, theory based on utility functions would seem a rather sounder
object. We hope that such methods will be developed for our models.

Other issues

Stephen Taylor asks about the intraday seasonal component of volatility. His points are, of course,
correct and more sophisticated modelling would allow the various effects which he discussed to be taken
into account. It is clear that Taylor and Xu (1997) is of importance in this field.

Frank Critchley asks several questions about the estimation of our models. In particular he desires a
more formal cross-validation approach to breaking the data set into pieces. Our hope in carrying this
out in a simple way was to see whether the model was reasonably stable over time. At the moment our
main effort is to think about design effective estimation methods, while we hope that we shall be able to
return to issues of outliers and inliers later.

Jens Ledet Jensen wonders whether the use of hidden Markov models may give a simple model
structure for these types of problems. In some senses this is true; however, in terms of the properties of
integrated volatility our models are quite simple compared with hidden Markov models. It is certainly
the case that a slowly moving trend model of the type that he suggests may give a good description of
this type of data; however, mean reversion in volatility is now a standard assumption following many
years of rigorous empirical testing.

Chris Jones asks us why our volatility models are not of the type

dx*(t) = {p+ B o(t)} dt + o(f) dw(r).

It is certainly the case that economic theory does not tell us that the risk premium (which relates the
mean to the variance) should be of the form that we use, u + 0 0°(), rather than the form which he
favours. Our choice was based on mathematical tractability and, more importantly, on the fact that our
model structure can alternatively be viewed as being obtained by subordinating Brownian motion with
drift by a generalized subordinator —integrated volatility.

It is a great pleasure that Professor Lawrance made a comment on our paper, as it gives us the
opportunity to correct an oversight in not quoting his important research on autoregressive models with
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non-negative errors. This is clearly related to our continuous time work. Lawrance and Lewis (1985) is a
good starting-point to read about this work.

Anthony Ledford discusses the extremal behaviour of returns for our SV models. This is an
important topic, but it is clear that the tail index of returns y, is immediately inherited from the tail
index of o’(r). This is one of the advantages of these types of models over discrete time ARCH-type
models where these issues are much more involved.

References in the discussion

Andersen, T. G. (1994) Stochastic autoregressive volatility: a framework for volatility modeling. Math. Finan., 4,
75-102.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Ebens, H. (2001a) The distribution of stock return volatility. J.
Finan. Econ., to be published.

Andersen, T., Bollerslev, T., Diebold, F. X. and Labys, P. (2001b) The distribution of realized exchange rate
volatility. J. Am. Statist. Ass., 96, 42-55.

Andersen, T. G., Chung, H.-J. and Serensen, B. E. (1999) Efficient method of moments estimation of a stochastic
volatility model: a Monte Carlo study. J. Econometr., 91, 61-87.

Andersson, J. (1999) Maximum likelihood estimation of the normal inverse Gaussian stochastic volatility. Compr.
Summ. Uppsala Dissertns Fac. Socl Sci., 82, 1-11.

Anh, V. V,, Heyde, C. C. and Leonenko, N. N. (2000) Dynamic models of long-memory processes driven by Lévy
noise with applications to finance and macroeconomics. Submitted to J. Appl. Probab.

Anh, V. V. and Leonenko, N. N. (1999) Non-Gaussian scenarios for the heat equation with singular initial
conditions. Stoch. Process. Applic., 84, 91-114.

Baillie, R. T. (1996) Long memory processes and fractional integration in econometrics. J. Econometr., 73, 5-59.

Barndorff-Nielsen, O. E. (1998) Processes of normal inverse Gaussian type. Finan. Stochast., 2, 41-68.

(2000) Superposition of Ornstein-Uhlenbeck type processes. Theor. Probab. Applic., to be published.

Barndorff-Nielsen, O. E. and Levendorskii, S. (2000) Feller processes of normal inverse Gaussian type. Research
Report 45. Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus.

Barndorff-Nielsen, O. E., Pedersen, J. and Sato, K. (2000) Multivariate subordination, selfdecomposability and
stability. Adv. Appl. Probab., to be published.

Barndorff-Nielsen, O. E. and Shephard, N. (2000) Econometric analysis of realised volatility and its use in estimating
Lévy based non-Gaussian OU type stochastic volatility models. Discussion Paper. Nuffield College, Oxford.

(2001a) Lévy Based Dynamic Models for Financial Economics. To be published.

(2001b) Integrated OU processes. Nuffield College, Oxford.

(2001¢) Normal modified stable processes. Nuffield College, Oxford.

Benth, F. E., Karlsen, K. H. and Reikvam, K. (1999) Optimal portfolio selection with consumption and nonlinear
integro-differential equations with gradient constraint: a viscosity solution approach. Finan. Stoch., to be
published.

Bingham, N. H. and Kiesel, R. (2001) Semi-parametric modelling in finance. Preprint. Brunel University, Uxbridge.

Bochner, S. (1949) Diffusion equation and stochastic processes. Proc. Natn. Acad. Sci. USA, 35, 368-370.

Bollerslev, T. and Mikkelsen, H. O. (1996) Modeling and pricing long memory in stock market volatility. J.
Econometr., 73, 151-184.

Bondesson, L. (1982) On simulation from infinitely divisible distributions. 4dv. Appl. Probab., 14, 855-869.

(1992) Generalized Gamma Convolutions and Related Classes of Distributions and Densities. New York:
Springer.

Britten-Jones, M. and Neuberger, A. (2000) Option prices, implied price processes and stochastic volatility. J. Finan.,
55, 839-866.

Brockwell, P. J. (2001) Lévy driven CARMA processes. Ann. Inst. Statist. Math., 52, 1-18.

Bruce, A. G. and Martin, R. D. (1989) Leave-k-out diagnostics for time series (with discussion). J. R. Statist. Soc. B,
51, 363-424.

Calzolari, G., Fiorentini, G. and Sentana, E. (2000) Constrained EMM and indirect inference estimation. Working
Paper 0005. Centro de Estudios Monetarios y Financieros, Madrid.

Chamberlain, G. (1988) Asset pricing in multiperiod securities markets. Econometrica, 56, 1283-1300.

Chambers, M. J. (1996) The estimation of continuous parameter long-memory time series models. Econometr.
Theory, 12, 374-390.

Chen, X., Hansen, L. P. and Scheinkman, J. (2000) Principal components and the long run. University of Chicago,
Chicago.

Coles, S. G., Currie, J. E. and Tawn, J. A. (1999) Dependence measures for extreme value analyses. Extremes, 2, 339—
365.

Comte, F. and Renault, E. (1996) Long memory continuous time models. J. Econometr., 73, 101-149.

Cox, D. R. (1981) Statistical analysis of time series: some recent developments. Scand. J. Statist., 8, 93-115.




Discussion on the Paper by Barndorff-Nielsen and Shephard 239

Cox, J., Ingersoll, J. and Ross, S. (1995) An intertemporal general equilibrium model of asset prices. Econometrica,
53, 363-384.

Davis, M. (2000) Mathematics of financial markets. In Mathematics Unlimited (eds B. Engquist and W. Schmid).
Berlin: Springer.

Davison, A. C. and Smith, R. L. (1990) Models for exceedances over high thresholds (with discussion). J. R. Statist.
Soc. B, 52, 393-442.

Derman, E. and Kani, 1. (1997) Stochastic implied trees. Quantitative Strategies Research Notes, Apr. Goldman
Sachs, London.

Diebold, F. X. and Lopez, J. (1995) Modeling volatility dynamics. In Macroeconometrics: Developments, Tensions,
and Prospects (ed. K. Hoover), pp. 427-472. Boston: Kluwer.

Ding, Z. and Granger, C. W. J. (1996) Modeling volatility persistence of speculative returns: a new approach. J.
Econometr., 73, 185-215.

Duffie, D. and Singleton, K. J. (1993) Simulated moments estimation of Markov models of asset prices. Econo-
metrica, 50, 929-952.

Dunbar, N. (1999) Inventing Money. New York: Wiley.

Dupire, B. (1992) Arbitrage pricing with stochastic volatility. Working Paper. Société Generale, Paris.

Embrechts, P., Kliippelberg, C. and Mikosch, T. (1997) Modelling Extremal Events. Berlin: Springer.

Ferguson, T. S. and Klass, M. J. (1972) A representation of independent increment processes without Gaussian
processes. Ann. Math. Statist., 43, 1634-1643.

Fiorentini, G., Sentana, E. and Calzolari, G. (2000) The score of conditionally heteroskedastic dynamic regression
models with Student t innovations, and an LM test for multivariate normality. Working Paper 0007. Centro de
Estudios Monetarios y Financieros, Madrid.

Frithwirth-Schnatter, S. and Soégner, L. (2001) Bayesian estimation of stochastic volatility models based on OU
processes with marginal gamma law.

Genon-Catalot, V., Jeantheau, T. and Larédo, C. (1999) Parameter estimation for discretely observed stochastic
volatility models. Bernoulli, 5, 855-872.

(2000) Stochastic Volatility models, hidden Markov Models and statistical applications. Bernoulli, to be
published.

Gerber, H. U. and Shiu, E. S. W. (1994) Option pricing by Esscher transforms. Trans. Soc. Act., 46, 99-191.

Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. (2000) Analysis of Structure of Time Series: SSA and Related
Methods. London: Chapman and Hall.

Guo, D. (1998) The risk premium of volatility implicit in currency options. J. Bus. Econ. Statist., 16, 498-507.

Halgreen, C. (1979) Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z.
Wahrsch Ver. Geb., 47, 13-17.

Hamilton, J. D. (1988) Rational-expectations econometric analysis of changes in regime: an investigation of the term
structure of interest rates. J. Econ. Dynam. Control, 12, 385-423.

Hansen, L. P. (1985) A method for calculating bounds in the asymptotic covariance matrix of generalized method of
moments estimators. J. Econometr., 30, 203-238.

Hansen, L. P. and Singleton, K. J. (1996) Efficient estimation of linear asset-pricing models with moving average
errors. J. Bus. Econ. Statist., 14, 53—68.

Hartvig, N. V., Jensen, J. L. and Pedersen, J. (2001) A class of risk neutral densities with heavy tails. Finan. Stoch., 5,
in the press.

Heath, D., Jarrow, R. and Morton, A. (1992) Bond pricing and the term structure of interest rates. Econometrica, 60,
77-105.

Heston, S. L. (1993) A closed-form solution for options with stochastic volatility, with applications to bond and
currency options. Rev. Finan. Stud., 6, 327-343.

Hindy, A. and Huang, C. (1993) Optimal consumption and portfolio rules with durability and local substitution.
Econometrica, 61, 85-121.

Hodges, S. D. and Neuberger, A. (1989) Optimal replication of contingent claims under transaction costs. Rev. Fut.
Mrkts, 8, 222-239.

Hodges, S. D. and Tompkins, R. (2000) The sampling properties of volatility cones. FORC Preprint 00/103.
University of Warwick, Coventry.

Hodgson, D. O., Linton, O. and Vorkink, K. (2001) Testing the capital asset pricing model efficiently under elliptical
symmetry: a semi-parametric approach. Preprint. London School of Economics and Political Science.

Hull, J. and White, A. (1987) The pricing of options on assets with stochastic volatilities. J. Finan., 42, 281-300.

Igloi, E. and Terdik, G. (1999) Long-range dependence through Gamma-mixed Ornstein-Uhlenbeck processes.
Electron. J. Probab., 4, 1-33.

Inoue, A. (1993) On the equations of stationary processes with divergent diffusion coefficients. J. Fac. Sci. Univ.
Tokyo, sect 1A, 40, 307-336.

Ismail, M. E. H. and Kelker, D. H. (1979) Special functions, Stieltjes transforms and infinite divisibility. SIAM J.
Math. Anal., 10, 884-901.

Jacquier, E., Polson, N. G. and Rossi, P. E. (1994) Bayesian analysis of stochastic volatility models (with discussion).
J. Bus. Econ. Statist., 12, 371-417.




240 Discussion on the Paper by Barndorff-Nielsen and Shephard

Jensen, J. L. and Pedersen, J. (1997) A note on models for stock prices. Research Report 372. Department of
Theoretical Statistics, University of Aarhus, Aarhus.

Jones, D. A. (1978) Nonlinear autoregressive processes. Proc. R. Soc. Lond. A, 360, 71-95.

Kendall, M. G. (1953) The analysis of economic time-series—Part 1: prices. J. R. Statist. Soc. A, 116, 11-25.

Kessler, M. (2000) Simple and explicit estimating functions for a discretely observed diffusion process. Scand. J.
Statist., 27, 65-82.

Lawler, G. F. and Sokal, A. (1988) Bounds on the L, spectrum for Markov chains and Markov processes: a
generalization of Cheeger’s inequality. Trans. Am. Math. Soc., 309, 557-580.

Lawrance, A. J. and Lewis, P. A. W. (1985) Modelling and residual analysis of nonlinear autoregressive time series in
exponential variables (with discussion). J. R. Statist. Soc. B, 47, 165-202.

Leadbetter, M. R. (1983) Extremes and local dependence in stationary sequences. Z. Wahrsch. Ver. Geb., 65, 291—
300.

Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and
Series. New York: Springer.

Ledford, A. W. and Tawn, J. A. (1997) Modelling dependence within joint tail regions. J. R. Statist. Soc. B, 59,
475-499.

Leon, A. and Sentana, E. (1997) Pricing options on assets with predictable white noise returns. Working Paper 9704.
Centro de Estudios Monetarios y Financieros, Madrid.

Leonenko, N. (1999) Limit Theorems for Random Fields with Singular Spectrum. Dordrecht: Kluwer.

Leonenko, N. N., Sikorskii, A. Yu. and Terdik, G. (1998) On spectral and bispectral estimator of the parameter of
nongaussian data. Rand. Oper. Stoch. Eq., 6, no. 2, 159-182; errata, 7, no. 1, 200.

Lévy, P. (1937) Théorie de I’Addition des Variables Aléatoires. Paris: Gauthier-Villars.

Lo, A. W. and Wang, J. (1995) Implementing option pricing models when asset returns are predictable. J. Finan., 50,
87-129.

Loeve, M. (1977) Probability Theory, 4th edn, vol. 1. New York: Springer.

(1978) Probability Theory, 4th edn, vol. 2. New York: Springer.

Madan, D. B., Carr, P. P. and Chang, E. C. (1998) The variance gamma process and option pricing. Eur. Finan. Rev.,
2, 79-105.

Mandelbrot, B. B. (1997) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. New York: Springer.

Meddahi, N. and Renault, E. (1996) Aggregation and marginalization of GARCH and stochastic volatility models.
Centre de Recherche en Economie et Statistique, Paris.

(2000a) Conditioning information in volatility models. To be published.

(2000b) Temporal aggregation of volatility models. Report CIRANO DP 2000s-22.

Melenberg, B. and Werker, B. J. M. (1999) A convenient way to characterize equivalent martingale measures in
incomplete markets. Statist. Inf. Stoch. Process., 2, 11-30.

Meng, X.-L. and van Dyk, D. (1997) The EM algorithm — an old folk-song sung to a fast new tune (with discussion).
J. R. Statist. Soc. B, 59, 511-567.

Merton, R. (1971) Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory, 3,
373-413.

(1973) An intertemporal asset pricing model. Econometrica, 41, 867-887.

Nicolato, E. and Venardos, E. (2000) Derivative pricing in Barndorff-Nielsen and Shephard’s OU type stochastic
volatility models. Working Paper. University of Aarhus, Aarhus.

Nijman, T. and Sentana, E. (1996) Marginalization and contemporaneous aggregation in multivariate GARCH
processes. J. Econometr., 71, 71-87.

Oppenheim, G. and Viano, M. C. (1999) Obtaining long-memory by aggregation random coefficients discrete and
continuous time series short memory processes. Publ. IRM A, 49, no. 5, 1-16.

Pitt, M. K. (2000) Smooth particle filters for likelihood evaluation and maximisation. Working Paper. University of
Warwick, Coventry.

Pitt, M. K. and Shephard, N. S. (1999) Filtering via simulation based on auxiliary particle filters. J. Am. Statist. Ass.,
94, 590-599.

Roberts, G. O. and Sahu, S. K. (1997) Updating schemes, correlation structure, blocking and parameterization for
the Gibbs sampler. J. R. Statist. Soc. B, 59, 291-317.

Roll, R. (1984) A simple implicit measure of the effective bid-ask spread in an efficient market. J. Finan., 39, 1127—
1139.

Rosenblatt, M. (1976) Fractional integral of stationary processes and the central limit theorem. J. Appl. Probab., 13,
723-732.

Rosinski, J. (2000) Stochastic series representations of inverse Gaussian and other exponentially tempered stable
processes. Research Report 42. Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus.

Rubinstein, M. (1994) Implied binomial trees. J. Finan., 49, 771-818.

Ryden, T., Terasvirta, T. and Asbrink, S. (1998) Stylized facts of daily return series and the hidden Markov model. J.
Appl. Econometr., 13, 217-244.

Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press.




Discussion on the Paper by Barndorff-Nielsen and Shephard 241

(2000) Subordination and selfdecomposability. Research Report. Centre for Mathematical Physics and
Stochastics, University of Aarhus, Aarhus.

Sato, K. and Yamazato, M. (1978) On distribution functions of class L. Z. Wahrsch. Ver. Geb., 43, 273-308.

(1983) Stationary processes of Ornstein—Uhlenbeck type. Lect. Notes Math., 1021, 541-551.

(1984) Operator-selfdecomposable distributions as limit distributions of processes of Ornstein—Uhlenbeck
type. Stoch. Process. Applic., 17, 73-100.

Sentana, E. and Fiorentini, G. (2000) Identification of conditionally heteroskedastic factor models. J. Econometr., to
be published.

Siu, T. K., Tong, H. and Yang, H. (2001) Bayesian risk measures for derivatives via random Esscher transform.
Research Report 286. Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong.
Skiadopoulos, G. and Hodges, S. D. (2000) Simulating the evolution of the implied distribution. FORC Preprint

00/110. University of Warwick, Coventry.

Stute, W. (2000) Jump diffusion processes with shot noise effects and their applications to finance. In Statistical
Modelling: Proc. 15th Int. Wrkshp Statistical Modelling, University of the Basque Country (eds V. Nunez-Anton
and E. Ferreira), pp. 86-94. Bilbao: Universidad del Pais Vasco.

Taqqu, M. S. (1979) Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Ver. Geb., 50,
53-83.

Taylor, S. J. and Xu, X. (1997) The incremental volatility information in one million foreign exchange quotations. J.
Emp. Finan., 4, 317-340.

Thorin, O. (1977) On the infinite divisibility of the lognormal distribution. Scand. Act. J., 47, 121-148.

Tompkins, R. and Hubalek, F. (2000a) Does it matter where jumps comes from?: underlying versus volatility
processes. Working Paper. Vienna University of Technology, Vienna.

(2000b) On closed form solutions for pricing options with jumping volatility. Vienna University of Tech-
nology, Vienna.

Tong, H. (1990) Nonlinear Time Series. Oxford: Oxford University Press.

Walker, S. G. (2000) A note on the innovation distribution of a gamma distributed autoregressive process. Scand. J.
Statist., 27, 575-576.

Wolfe, S. J. (1982) On a continuous analogue of the stochastic difference equation x, = px,_; + b,. Stoch. Processes
Applic., 12, 301-312.

Woyczynski, W. A. (1998) Burgers-KPZ turbulence. Lect. Notes Math., 1700.

Yamazato, M. (1978) Unimodality of infinitely divisible distribution functions of class L. Ann. Probab., 6, 523-531.




