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ABSTRACT: There has been recent evidence for long memory in the changes of
foreign exchange spot rates that is captured by the fractionally integrated ARMA
model. This paper extends these investigations in several directions. First, the
estimation procedure allows for GARCH errors. Second, in addition to the total
period from 1973 to 1990 three subperiods are analyzed. Third, for the US-Dollar
spot rates of the Deutsche Mark and the Swiss Franc ARFIMA model selection and
estimation results for various observation frequencies are compared to ARFIMA
specifications and their parameter values that are obtained from temporal aggre-
gation. As a result the evidence for weak long memory in the changes of US-Dollar
exchange rates is confirmed. However, long memory appears to be a property at-
tached to the US currency since the analysis of the Deutsche Mark/Swiss Franc
spot rate changes does not reveal any long memory.

KEYWORDS: time series analysis, long memory, ARFIMA models, GARCH
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1 INTRODUCTION

In the internationally linked economies of today, the behavior of foreign ex-
change rates is of crucial importance to international investors as it determines
their real and financial profits as well as their investment opportunities. Any
investment decision requires a rational investor to predict foreign exchange rates
and the implied risk. While, during the last decade, there has been considerable
progress in statistically modelling the latter, predicting flexible foreign exchange
rates remains to be rather unsatisfactory if one aims at improving on the mar-
tingale forecasts that are given by the current rate, possibly combined with a
drift.

Successfully applying more advanced statistical models for prediction would
not only serve investors, but also economists in general as they would gain more
insights into the empirical behavior of foreign exchange rates. In modern finance
the pricing of derivatives requires assumptions on the price processes of the un-
derlying assets. In practice, this price process should be statistically estimated.
Thus, improving on the statistical description of the exchange rate process would
immediately translate into a more reliable pricing of derivatives or an increase in
the quality of optimal hedging policies against exchange rate risk. Moreover, a
better knowledge of the empirical properties of exchange rates is an indispensable
prerequisite for deriving a superior theoretical understanding of dynamic exchange
rate behavior. This paper aims at providing more insights into the stochastic pro-

cess underlying selected exchange rates.



There is strong evidence that foreign exchange rates exhibit strong nonlin-
earities. In particular, they are found to be conditionally heteroskedastic and
unconditionally leptocurtic. However, Diebold and Nason (1990) are not able to
exploit these nonlinearities for enhanced point prediction when using nonparamet-
ric techniques. Of course, within the class of linear models the martingale must
be the best model for prediction if there is no autocorrelation in the data. Indeed,
the hypothesis of uncorrelated increments cannot be rejected in many empirical
investigations. For instance, using the heteroskedasticity-adjusted Box-Pierce Q
test, Liu and He (1991) obtain this result for weekly US-Dollar spot rates of the
Canadian Dollar, the French Franc, the Deutsche Mark, the Japanese Yen, and
the British Pound for the period from August 7, 1974 to March 29, 1989. Em-
ploying the Box-Pierce statistic, Gaab (1983) finds similar results for some time
series of daily exchange rate changes. He analyzes Deutsche Mark spot rates of
the US Dollar, the British Pound, the Dutch Guilders, the French Franc for the
period from January 2, 1974 until February 13, 1979 and various subperiods. Ear-
lier studies finding no autocorrelation in exchange rate data include for example
Cornell and Dietrich (1978) or Logue, Sweeney, and Willett (1978).

However, if the data show small autocorrelations of the same sign for many
lags the acceptance of uncorrelated increments may be due to the behavior of the
(heteroskedasticity-adjusted) Box-Pierce statistic. It is pointed out in Liu and
He (1991) that in such a case the heteroskedasticity-consistent variance-ratio test

developed by Lo and MacKinlay (1988) is more likely to reject the null of no serial



autocorrelation. In fact, Liu and He (1991) find evidence for correlated weekly
increments in the dollar spot rates of the Deutsche Mark and the Japanese Yen
for the same period as above when they apply the variance-ratio test of Lo and
MacKinlay.

Their results indicate that changes of foreign exchange rates may well exhibit
autocorrelation, however, small and possibly not of the simple ARMA kind. One
reason for the failure of the ARMA model could be that this class of linear time se-
ries models is only able to capture short memory processes. Consequently, ARMA
models are unable to model stochastic dependence between distant observations.
Processes of the latter kind are said to exhibit long memory and are defined by
a non-absolutely summable autocovariance function (McLeod and Hipel (1978)).
Indeed, using the R/S analysis, Booth, Kaen, and Koveos (1982) present evidence
for long memory in daily changes of the US-Dollar spot rates of the British Pound,
the French Franc, and the Deutsche Mark for the period from July 1, 1973 until
June 30, 1979. Using the modified R/S test suggested by Lo (1991) that is ro-
bust to short-range dependence, Cheung (1993) confirms their findings for weekly
exchange rate changes for a longer period that also includes the 80’s.

Exploiting long memory for prediction, however, requires some kind of long
memory model. As an attractive parameterization Granger and Joyeux (1980) and
Hosking (1981) independently proposed the fractionally integrated ARMA(p, d, q)
(also called ARFIMA(p,d,q)) model that is a direct generalization of the well

known ARIMA(p,d,q) model by allowing the differencing parameter d to take



real values instead of being restricted to the integer domain. Cheung (1993) was
the first one who applied the ARFIMA model to foreign exchange rates. In his
analysis of the weekly changes of US-Dollar spot rates of the British Pound, the
Deutsche Mark, the Swiss Franc, the French Franc, and the Japanese Yen for
the period from January 1974 to December 1989 he finds statistical evidence for
long memory using various estimation techniques. However, the selected ARFIMA
specifications do not outperform the random walk model in out-of-sample forecasts
for the forecasting period 1990 and 1991.

This contradiction may indicate that Cheung’s (1993) evidence of long mem-
ory in foreign exchange rates may be weaker than he claims. There exist at least
two reasons why the finding of long memory in foreign exchange rates could be
spurious. First of all, Cheung’s (1993) estimation results may be biased since
the estimation method chosen is not able to take into account conditional het-
eroskedasticity which is a well known feature of foreign exchange rates. Secondly,
the finding of long memory could be caused by a specific but short episode in the
time series of foreign exchange rates. Moreover, the generality of Cheung’s results
is restricted to US-Dollar spot rates and may be simply caused by the behavior
of the US currency.

By re-examining the evidence for long memory in selected foreign exchange
rates, this paper addresses all these issues. In order to deal with conditional
heteroskedasticity in highfrequent data, an alternative approximate time domain

maximum likelihood estimation method is applied that allows simultaneous esti-



mation of an ARFIMA(p,d, q)-GARCH(P, @) model. This method was suggested
by Baillie, Chung, and Tieslau (1992). Secondly, the analysis of three subperi-
ods in addition to the total period from January 31, 1973 to April 30, 1990 aims
at detecting structural change. Moreover, results on the temporal aggregation
of ARFIMA processes will be used as an additional check of the validity of the
long memory hypothesis by investigating daily, weekly, monthly, and quarterly
changes of exchange rates. Finally, in addition to the US-Dollar spot rates of the
Deutsche Mark and the Swiss Franc, the pure European spot rate of the Swiss
Franc/Deutsche Mark is analyzed.

In these investigations the strongest evidence for weak long memory in the
changes of foreign exchange rates is found for the DM /US-Dollar rate followed by
the evidence for the SF/US-Dollar spot rate. In contrast, the DM/SF spot rate
does not exhibit any long memory within the class of ARFIMA models.

The paper is organized as follows. In section 2 the theory of the ARFI-
MA(p,d,q) model is introduced. The presentation includes results on tempo-
ral aggregation and an extension to GARCH errors. The empirical results are
discussed in section 3. Details of the estimation and prediction techniques are

summarized in an appendix. Section 4 concludes.

9 ARFIMA(p,d,q) MODELS
The ARFIMA(p, d, q) process {z;} satisfies the difference equation

a(B)V'z; = B(B)e: (1)
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with the disturbance process
{ee} ~WN(0,07) (2)

being white noise with variance o?. Using the backshift operator B, the fractional

differencing operator V¢ can be written as an infinite AR polynomial

vi=> " mB (3)
k=0
with the AR coeflicients 73, given by 79 = 1 and

nk:@4fﬂd_m”éﬁ_k+lx k=1,2,.... (4)

a(By=1—ayB—ayB? — ... —a,B? and B(B) =1+ B+ 3,B*+ ...+ 3,B?
denote the autoregressive and moving average polynomials, respectively. Both
polynomials are assumed to have no common roots, and the roots of the AR
polynomials «(z) and of the MA polynomial 3(z),z € C, are assumed to lie
outside the unit circle. For d € (—0.5,0.5) this process is invertible and causal
(see Granger and Joyeux (1980), Hosking (1981) and Brockwell and Davis (1991,
Def. 13.2.2, p. 524, Theorem 13.2.2, p. 525)). To obtain non-stationary processes
with d > 0.5,V? can be obtained by the combination of fractional differencing
following equation (3) and integer differencing.

An explicit formula for computing the autocovariance function of an ARFI-
MA(p,d, q) process was derived by Sowell (1992). This procedure involves the

calculation of the hypergeometric function if the AR part is non-zero.



For non-zero d, the autocovariance function v(7) declines hyperbolically
(1) ~ CT* as T — oo, (5)

where C' > 0. (See Brockwell and Davis (1991, Theorem 13.2.2, pp. 525 - 6) for
proofs.) In contrast, the traditional ARMA model corresponding to d equal to
zero shows an autocovariance function that declines much faster at an exponential
rate. As for positive d the autocovariance function (5) can be shown not to be
absolutely summable (Brockwell and Davis (1991)), the ARFIMA(p, d, q) process
exhibits long memory for d > 0 while d = 0 corresponds to the presence of short
memory. The case of negative d is sometimes referred to as intermediate memory
(Brockwell and Davis (1991)). Thus, the dependence between distant observations
is solely determined by the memory parameter d.

In the frequency domain this memory classification corresponds to an infinite,
finite, or zero spectral density at the origin for d greater than, equal to or smaller
than zero, respectively (Brockwell and Davis (1991)). This can be directly seen

from the spectral density function

_ o’ |[F(w)]?

— 1_ —w | —2d 6
o |Fa(w)|2| e (6)

fw)
with F,, and Fj denoting the Fourier transforms of the AR and MA polynomial

as 1t can be approximated for w — 0 by

w—0

lim f(w) = | | (7)



Thus, by allowing to model short and long memory simultaneously, ARFIMA(p, d, ¢)
processes suggest themselves as an ideal tool for detecting long memory.

If one observes the ARFIMA process {x;} only every m-th period, the re-
sulting process {#;},{ = m,2m,3m, ... is said to be temporally aggregated. The
properties of temporally aggregated ARFIMA processes are derived in Baillie, Ni-
jman, and Tschernig (1994). They show that the degree of fractional integration
is independent of temporal aggregation if d > 0 in case of stock variables and
d > —1 in case of flow variables. Although the class of ARFIMA(p,d, q) models
is not closed under temporal aggregation, a temporally aggregated process may
well be approximated by an ARFIMA(p, d, ¢*) model with a low order MA poly-
nomial. Furthermore, they provide a numerical procedure to calculate the ¢* MA
parameters of the temporally aggregated, approximate ARFIMA(p, d, ¢*) process
for given values of a(B), d, and 3(B) and a given order of temporal aggregation
m. As this procedure is applied in the empirical analysis it is briefly described in
appendix A.

It is well documented that high frequency data of financial time series exhibit
conditional heteroskedasticity. To allow for this in the framework of ARFIMA
models, the ARFIMA(p,d,q)-GARCH(P,Q) model is applied which was intro-
duced by Baillie, Chung, and Tieslau (1992). It replaces (2) by a white noise

process with conditional variance

{ee} ~ WN(0, 07). (8)



The conditional variance o} is determined by the lagged values of the conditional

white noise variance and lagged squared realisations of the error term &2

$(B)oi = &£+ 0(B)e}. (9)
with the polynomials defined by ¢(B) = 1 — 1B — ... — ¢pBY and 0(B) =
0B+ ...+ HQBQ. Since 5? cannot be negative, sufficient conditions to ensure

nonnegativity require that ¢; > 0,2 =1,.... P, 0, > 0t = 1,...,Q, & > 0 and

#(1) > 0. Given the nonnegativity restriction, £? is covariance-stationary if

—¢(1)+6(1) < 0 or (10)

brtdrt..topt it Ot +lg < 1 (11)

(see Hamilton (1994, p. 665-6) for details).
By scaling the errors ¢; by the conditional standard deviation o; one again
obtains homoskedastic errors
&t

v = — (12)

0t

that are i.i.d with zero mean and unit variance.

3 EMPIRICAL RESULTS

This section re-examines the evidence of long memory in foreign exchange
rates. It presents estimation and prediction results on daily, weekly, monthly, and
quarterly changes of the US-Dollar spot rates of the Deutsche Mark (DM) and
the Swiss Franc (SF) as well as of the changes of the Deutsche Mark/Swiss Franc

9



spot rate. The total period under investigation runs from January 31, 1973 until
April 30, 1990. The results of different observation frequencies are evaluated in
light of the properties of temporal aggregation which were presented in section 2.

The issue of structural stability over time of the selected models is addressed
by estimating different subperiods. In order to evaluate the importance of pos-
sible adjustment effects after the end of Bretton-Woods, one subperiod starts on
January 1, 1976. As the end of the seventies was marked by a considerable change
in the US monetary policy and the beginning of the European Monetary System,
the total sample was also divided into two subsamples covering January 1, 1973

until December 31, 1979 and January 1, 1980 until April 31, 1990, respectively.

3.1 Data and methods

The DM and SF dollar spot rates underlying this study have kindly been made
available by the Bank for International Settlements in Basle, Switzerland. They
correspond to the official fixing at 1 p.m. Frankfurt time. Prior to 1977 the SF/US-
Dollar spot rate conforms to the market closing middle rate. Subsequently, the
official base rate at 1 p.m. Swiss time is used. The DM/SF spot rate is obtained
by calculating the cross rate of the DM/US-Dollar and SF/US-Dollar. Weekly
data are sampled by using end-of-week quotations. By taking observations of the
last trading day of each month, the monthly series are retrieved. Finally, the
quarterly series consist of the last quotation in each quarter. As usual, the first

differences of the logarithmized values are taken for estimation.
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For estimation only approximate maximum likelihood methods are used. While
for estimating ordinary ARFIMA(p, d, ¢) specifications two different approximate
frequency domain maximum likelihood methods are employed, namely the Whittle
estimator (24) or its approximation (27), the approximate time domain maximum
likelihood method (29) of Baillie, Chung, and Tieslau (1992) is applied for es-
timating the more complex ARFIMA(p,d, ¢)-GARCH(P, Q) models. All three
estimation methods are described in appendix B.

Since it is well known that daily changes of foreign exchange rates exhibit
conditional heteroskedasticity (e.g. Hsieh (1989), Bollerslev and Engle (1993)),
it seems appropriate to apply the approximate time domain maximum likelihood
method (29) that allows the estimation of ARFIMA-GARCH specifications. How-
ever, in case of more than 4000 observations the calculation of the corresponding
approximate maximum likelihood (29) is very computer intensive. On the other
hand, given such large number of observations one may well ignore the GARCH
structure for the estimation of the ARFIMA parameters. In case of an AR-
GARCH model Bollerslev (1986) shows that the AR parameters can be estimated
consistently and without loss of asymptotic efficiency when the GARCH structure
is ignored. It can be conjectured that this result remains valid even for general
ARFIMA specifications if the ARFIMA model is invertible such that it has an in-
finite AR representation. As an illustration an ARFIMA(2,d,0)-ARCH(1) process
with 4000 observations is generated and estimated with the approximate Whittle

estimator (27). Setting a1 = —.2, ag = —.2, d = .1, £ = 0.5 and ¢; = .2 one
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obtains estimates with standard errors smaller than 0.02 and point estimates that
are very close (< 0.02) to the true values. For this reason, the well known GARCH
structure is neglected in the estimation of daily data and the approximate Whittle
estimator (27) is applied instead.

For the analysis of weekly and monthly data, however, the approximate time
domain method for the simultaneous estimation of ARFIMA-GARCH models (29)
is used. From various Monte Carlo simulations it is known that detecting long
memory poses severe problems if the sample size becomes small, e.g. consists of 100
observations or less. Thus, there is only a small probability for finding evidence
for long memory in seventeen years of quarterly data even it is present. This prob-
ability can only be slightly increased by using the Whittle estimator (24) which is
therefore employed instead of its approximation (27) (cf. Tschernig (1994)). This
is possible since conditional heteroskedasticity is negligible in quarterly data.

When no GARCH errors are considered, the model selection is based on a set
of 17 alternatives of ARFIMA(p,0,¢) and ARFIMA(p,d,q) specifications with
the length of the AR and the MA polynomial varying between 0 and 2. If in
addition GARCH errors are allowed for, all 17 ARFIMA(p, d, ¢) specifications are
estimated for GARCH(0,0), GARCH(1,0) and GARCH(1,1) disturbances. For
model selection, the AIC and Schwarz criterion are used. In case of several hun-
dred observations, the model selection turns out to be very computer intensive if
all ARFIMA-GARCH specifications are considered as described above. Therefore,

the model selection procedure is only carried out for full samples. The selected
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model specification is then also used for each subperiod.

Out-of-sample forecasts provide the most rigorous test of a selected and es-
timated time series model. Therefore, out-of-sample forecasts for horizons of six
and twelve months are conducted. Following the argument of Engel and Hamil-
ton (1990), the random walk model with drift is employed as a benchmark. Using
conventional statistical tests they find that the null hypothesis of a constant drift
term over their estimation and prediction period is rejected and conclude that this
implicitly rejects both random walk hypotheses, with and without drift, although
the latter outperforms the former for their period of analysis. For quarterly data
the predictions are carried out by means of the exact prediction method using
the Innovations Algorithm of Brockwell and Davis (1991). All other predictions
are computed with the approximate method ((34) and (35)). Both methods are
described briefly in appendix B. The forecasting performance of each model is

evaluated by the mean squared error (M SFE)

T—h

MSE—ZM (13)
= T-T—h

where T' corresponds to the minimal length of the estimation period. T denotes the
total number of periods investigated including the last predicted date. h represents
the number of forecasted periods, and 3;4, and s;y, denote the predicted and the
actual logarithmized foreign exchange rate at time ¢ 4+ h, respectively. Following
Engel and Hamilton (1990) the initial predictions $744 are based on the estimation

period from January 1, 1973 until December 31, 1983. Then, the out-of-sample
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forecasts $;1j are repeated with the estimation period being each time extended

by one period until the predictions reach January 1, 1988.

3.2 DM/US-Dollar spot exchange rates

The results for daily changes in the DM/US-Dollar spot rate for the total
period as well as for the three subperiods are shown in table 1. The memory
parameter d is always significant and positive if the approximate Whittle esti-
mator and the AIC criterion are employed. Note that the absolute values of the
estimated short memory AR parameters closely resemble the first two parameters
of the infinite AR representation of an ARFIMA(0,d,0) process with identical d.
However, there do never exist any common roots between the long and the short
memory components of an ARFIMA(p, d, q) process as the ARFIMA(0,d, 0) pro-
cess parallels either an infinite MA or an infinite AR process which cannot be
described by a finite ARMA process. Thus, finding the p or ¢ estimated short
memory parameters coinciding with the first p or ¢ parameters of the infinite MA
or AR representation of the ARFIMA(0,d,0) process might indicate that there
is only weak stochastic dependence between narrow observations while stochas-
tic dependence remains non-negligible between distant observations. Indeed, the
parameters of the infinite AR representation of the estimated ARFIMA(2,d,0) pro-
cess and the parameters of the infinite AR representation of an ARFIMA(0,d,0)
process with identical d differ after the fourth lag only in the fifth digit after

the decimal point. There is almost no variation in the estimates of d across the
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three subperiods. Table 1 shows that the estimate of the memory parameter only
slightly changes if the early years of the seventies are ignored. Thus, there does

not seem to be evidence for structural change.

insert table 1 here

In contrast to the AIC, the Schwarz criterion selects for the full period an
MA(1) process with an insignificant parameter estimate very close to zero. From
Monte Carlo studies it is known that the Schwarz criterion may behave compar-
atively poorly to the AIC when the true process is an ARFIMA(p,d, q) process
and the sample size is small (cf. Schmidt and Tschernig (1994)). As this result
hardly holds for very large samples, one should choose the MA(1) model selected
by the Schwarz criterion if one aims at avoiding inconsistent model selection, a
property inherent to the AIC. Then, daily DM/US-Dollar rate changes would be
uncorrelated.

Before any final conclusions were drawn, properties of temporally aggregated
ARFIMA processes should be exploited. From section 2 it is known that the
memory parameter d remains unchanged if the process exhibits long memory
and the observation frequency is decreased. However, the short memory compo-
nents change. In case of an ARFIMA(2,d,0) process temporal aggregation yields
an ARFIMA(2,d, 0c0) process. Table 2 shows the values of some short memory
parameters of the temporally aggregated processes that are computed with the

method described in appendix A. It can be seen that both the AR parameters
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as well as the first two MA parameters are zero or almost zero for all temporally
aggregated processes under consideration. Therefore, all temporally aggregated
processes can be well approximated by an ARFIMA(0,d,0) process. If the true
process is a pure long memory process, Schmidt and Tschernig (1994) find in
their Monte Carlo simulations that the Schwarz criterion is more likely to select
the true ARFIMA(0,d,0) process than the AIC if the sample size is small or
medium. This is in contrast to the case of the general ARFIMA(p,d, q) process
considered above. As the working hypothesis is that the ARFIMA(2,d,0) model
is correct, the Schwarz criterion is employed in the sequel. In case the working hy-
pothesis is false this should be indicated by point estimates of d which are hardly

compatible with the predictions of temporal aggregation.

insert table 2 here

When one estimates weekly changes of the DM/US-Dollar rate over the full
period, one almost precisely obtains the ARFIMA(0,d, 0) process with d = 0.079
which is produced by temporal aggregation. The parameter estimates of an
ARFIMA(0, d,0)-GARCH(1,1) process which is selected out of 51 different ARFIMA-
GARCH specifications by the Schwarz criterion are shown in the second column
of table 3. It should be noted that ignoring the highly significant conditional
heteroskedasticity does not result in a much different memory parameter esti-
mate (d = 0.074 compared to d = 0.063) while the standard error is identical in

both cases. Tschernig (1994) contains detailed results based on ARFIMA(p, d, q)
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specifications that are estimated with the approximate Whittle estimator.
insert table 3 here

In contrast to daily data, there is more variation of the memory parameter es-
timates for weekly data across the three subperiods. This can be seen in columns
three to five of table 3. Ignoring the early years of the seventies makes the d
estimate insignificant, while ignoring the eighties leads to an increase in d. Nev-
ertheless, the qualitative behavior resembles the findings for the daily changes.
Thus, one might explain the variation in the parameter estimates more on purely
statistical grounds than by structural change although there is no reliable test
for structural change in the presence of long memory. Note that a possible ex-
planation of the latter could be learning and adjustment effects that followed the
collapse of the Bretton-Woods system.

When one considers monthly data, once again a pure long memory specifi-
cation is selected for the total period if the Schwarz criterion is used. Table 4
displays the results of the ARFIMA(0, d, 0) models for all four periods. Although
now the memory parameter estimates are no longer significant, they lie in a rea-
sonable range to be in line with the predictions of temporal aggregation except
for the seventies when the sign changes. One should have in mind, however, that
the sample of monthly changes in the eighties consists of only 122 observations,
a number which is known to be at the lower limit for long memory analysis. For

this reason it is not very informative to investigate quarterly data with a maxi-
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mum of 68 observations. For completeness, the results are shown in table 5. The
Schwarz criterion selects an ARFIMA(0,d,0) model when the Whittle estimator
(24) is applied. In contrast to previous observation frequencies the memory pa-
rameter estimate is now close to zero, insignificant and no longer supportive to

the hypothesis of temporal aggregation.

insert table 4 here

insert table 5 here

In sum, there is substantial evidence for weak long memory in the changes of
the DM /US-Dollar spot rate. In particular, both, the selected models as their pa-
rameter estimates across various observation frequencies in general correspond to
the prediction of temporal aggregation which are based on the ARFIMA(2,d,0)
specification of daily changes. In some cases, however, there is a slight varia-
tion in the point estimates and their significance across different subperiods and
observation frequencies.

This evidence pro long memory is also supported by out-of-sample forecasts.
Table 6 shows the relative improvement or deterioration of the MSFE of the
ARFIMA(0, d,0) specification to the M SF of the random walk with drift for a 6-
and a 12-month forecast horizon for weekly, monthly and quarterly exchange rate
changes. Except for the highly unreliable results of quarterly data, all ARFIMA
predictions show a slight improvement over the random walk with drift model.
Note that the estimated d for daily changes is too small in order to produce fore-
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casts which differ noticeably from the mean of the time series. Therefore there

are no out-of-sample forecasts presented for daily data.

insert table 6 here

3.3 SF/US-Dollar spot exchange rates

The daily changes of the SF/US-Dollar exchange rates are estimated using
the approximate Whittle estimator for reasons explained in subsection 3.1. Se-
lecting the model specification on the basis of the AIC, one obtains the same
ARFIMA(2,d,0) specification for the total period as for the daily changes of the
DM/US-Dollar rates. However, as can be seen from table 7 the magnitude as well
as the t-values of the parameter estimates are smaller than for the DM /US-Dollar
series. This will also be the final result of this subsection. The SF/US-Dollar spot
rate behaves similarly to the DM /US-Dollar spot rate but its stochastic structure

is weaker.

insert table 7 here

The memory parameter estimates for the ARFIMA(2,d,0) specification vary
more across the subperiods than those of the DM /US-Dollar rate. They are sig-
nificant at the 5% level only for the total period and the eighties. Not surprisingly,
when the model selection procedure is carried out for each subperiod, the AIC
chooses ARFIMA specifications only for these periods (cf. Tschernig (1994, p.

194, Tabelle 7.14)).
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Employing the Schwarz criterion one obtains an insignificant MA(1) process
for the total period, just like for the DM /US-Dollar rate. Again, properties of
temporal aggregation are used to resolve the contradicting model selection re-
sults. Table 2 shows parameter values of temporally aggregated ARFIMA(2,d, 2)
processes of the ARFIMA(2,d,0) process which was chosen by the AIC for daily
data. As in the previous section the short memory parameters are around zero so
that temporal aggregation results in an ARFIMA(O0,d,0) process. Following the
arguments in the previous subsection, the Schwarz criterion is therefore used for
model selection of temporally aggregated time series. The approximate time do-
main maximum likelihood ARFIMA(p,d, ¢)-GARCH(P, Q)) estimates for weekly
changes are contained in Table 8. For the full period the selected ARFIMA(O0, d, 0)
model as well as the memory estimate of d = 0.049 correspond well to the theo-
retical values computed in table 2. Furthermore, the variation across subperiods
which is observed for daily changes also carries over to weekly data. Note that
the significant d estimate for the changes in the seventies of 0.117 is twice as large
as for the total period and five times as large as the corresponding value for daily

changes.
insert table 8 here

For monthly changes of the SF/US-Dollar spot rate the Schwarz criterion also
selects the ARFIMA(0, d, 0) specification with memory parameter estimates which

are compatible with temporal aggregation except for the seventies. This can be
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seen from table 9. The memory parameter estimates are not significant, however.
These results were already found for the monthly changes of the DM/US-Dollar
rates in the previous subsection. As mentioned there, the insignificance may be
caused by the few number of observations. Finally, the Schwarz criterion selects a

short memory MA(1) process for quarterly observations as can be seen from table

D.

insert table 9 here

In sum, there is also evidence for weak long memory in the changes of the
SF/US-Dollar spot rates although it is weaker than for the changes of the DM /US-
Dollar spot rates. In particular, there is more variation across subperiods and the
estimates exhibit in general smaller ¢-values and are less often significant. Never-
theless, the third and fourth row of table 6 show that there is some improvement
of the relative out-of-sample performance of the ARFIMA(0, d,0) model over the
random walk with drift. It is, however, smaller than in case of the DM /US-Dollar

changes.

3.4 DM/SF spot exchange rates

Is there also evidence for long memory in exchange rates which do not involve
the US-Dollar spot rate? In order to obtain a first answer to this question, the
DM/SF spot rate is investigated. It is chosen because the Swiss Franc is not a
member of the EMS while still being an important international currency. For
the total period of daily changes both selection criteria, the AIC as well as the
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Schwarz criterion select an ARMA(2,2) model with highly significant parameter
estimates as shown in the second column of table 10. The estimates are obtained
using the approximate Whittle estimator. However, when this specification is
estimated for the subperiods from 1976 to 1990 and 1973 to 1980, the Hessian
matrix cannot be inverted. Thus, it is necessary to conduct the model selection
procedure for each subperiod and therefore the results of Tschernig (1994, p. 196,
Tabelle 7.15) are reported here. Table 10 exhibits the estimated models chosen
by the AIC. For the subperiod 1976 to 1990 one obtains an ARFIMA(0,d,0)
model with an insignificant memory parameter estimate close to zero. For the
period 1980 to 1990, the Schwarz criterion produces the same result while the
AIC chooses the ARMA(2,2) specification as for the total period. Now, however,
its highly significant estimates are close to having common roots. As a result,
there is no evidence for any stochastic structure in the subperiods covering the
eighties. This finding can be interpreted as evidence for structural change. Indeed,
when the eighties are ignored, either a significant AR(2) or a significant MA(1)
model is selected depending on the choice of the selection criterion. One reason
for structural instability could be that the Swiss central bank started to link the
Swiss Franc to the EMS at the end of the seventies. Thus, there is no indication

for long memory at all.

insert table 10 here

When weekly data are considered and ARFIMA(p,d, q)-GARCH(P, Q)) speci-
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fications are allowed for in the estimation procedure, both selection criteria select a
specification which involves a long memory component. While an ARFIMA(1,d, 1)-
GARCH(1,1) specification with a significant memory estimate of d = —.025 is se-
lected by the AIC, column two of table 11 shows an insignificant ARFIMA(0, d, 0)-
GARCH(1,1) model chosen by the Schwarz criterion. Independent of the choice
of the selection criterion, the memory parameter estimate is close to zero. Ap-
plying the latter specification in the analysis of the subperiods, the conclusion
drawn from the analysis of daily data is confirmed. The subperiod of the seven-
ties appears to exhibit stochastic structure in contrast to the eighties. However,
one should not interpret the point estimate of d = 0.075 of column five in favor
of the presence of long memory as one should expect a complete model selection
procedure to choose a different model specification since a long memory model
can never be the result of temporal aggregation when the daily changes do not

exhibit long memory.
insert table 11 here

Both, the AIC as well as the Schwarz criterion select an AR(1)-ARCH(1)
specification for the full period of monthly changes. As table 12 shows, the AR
parameter is insignificant for the full period and all subperiods. Note that now the
seventies do no longer show any sign of stochastic structure. When the quarterly

changes are investigated with the Whittle estimator, one finds an insignificant

MA(1) process as shown in table 5.
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insert table 12 here

Therefore one can conclude that there is no long memory present in the changes
of the European DM/SF spot rate. For this reason, no out-of-sample forecasts
are carried out. There is, however, evidence that the highfrequent changes show
a short memory structure in the seventies.

Taking these results on the changes of the DM/US-Dollar, the SF/US-Dollar,
and the DM/SF exchange rate together, one comes to the conclusion that long
memory is solely a phenomenon linked to the US-Dollar exchange rates and there-
fore possibly to the US economy, while the increments of the European DM /SF
rate show short memory behavior in the seventies. Several theoretical explana-
tions of long memory in foreign exchange rates have been put forward in the
literature. Most notably, Cheung (1993) suggests that the dynamics of foreign
exchange rates are tied to the behavior of the relative national prices if the pur-
chasing power parity holds. He also presents some empirical evidence for long
memory in the monthly changes of relative national consumer price indices. Fur-
thermore, he considers the role of various fundamentals such as relative money
supplies or relative outputs as they are standard determinants in exchange rate
models. In Tschernig (1994) this line of thought is taken up. It is shown for
an "example economy” based on the Lucas (1982) two country—two goods model
that the foreign exchange rate exhibits the degree of (possibly fractional) inte-
gration which ranks highest among the various degrees of (possibly fractional)
integration of the national good and money markets. In this modelling approach
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expectations in the determination of exchange rates are neglected. However, as
Tschernig (1994) has shown this result also holds in a model of the typical asset
market approach introduced by Mussa (1976) or Frenkel and Mussa (1980). The
asset market model considered in Tschernig (1994) is based on a simple monetary
model, the assumption of purchasing power parity, and the uncovered interest rate
parity. Finally, it should be pointed out that long memory in foreign exchange

rates may also be the result of market inefficiencies.

4 CONCLUSION

As the existing evidence on long memory in foreign exchange rates is partially
inconclusive, this paper attempted a more detailed analysis of three foreign ex-
change rates regarding the presence of long memory captured by the fractional
ARIMA(p,d, q) model. This linear time series model is a direct generalization
of the ARIMA(p, d, ¢) model since it allows the differencing parameter d to take
real values. This paper extended previous investigations in several directions.
First, results on the temporal aggregation of ARFIMA(p,d,q) processes were
used in order to check the existing evidence for long memory in DM /US-Dollar
and SF/US-Dollar rates. For this reason daily, weekly, monthly and quarterly
data were considered. Second, in order to address the issue of structural stabil-
ity, three subperiods were investigated in addition to the total period of 1973 to
1990. Third, the analysis also includes the European DM/SF spot rate in order to
check the dependence of the previous evidence on long memory on the US econ-
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omy. Fourth, when necessary, an estimation procedure is employed that allows to
estimate ARFIMA (p, d, q) specifications with GARCH(P, @) errors.

The strongest evidence for weak long memory was found in the changes of the
DM/US-Dollar spot rates followed by the changes of the SF/US-Dollar spot rates
where the stochastic structure of both dollar spot rates appears to be quite similar
although the memory parameter estimates for the changes of the SF/US-Dollar
spot rate show more variation across the subperiods that were investigated. Daily
exchange rate changes are well described by ARFIMA(2,d,0) processes with a
small and positive memory parameter. The AR component basically disappears
if the observation frequency is reduced to weekly, monthly or quarterly data while
the memory parameter remains the same. This can be shown by using results
of temporal aggregation of ARFIMA processes. The empirical results for weekly,
monthly, and quarterly changes are found to be generally consistent with the prop-
erties of temporal aggregation. However, the parameter estimates for monthly and
quarterly data are no longer significant. This may be attributed to the insufficient
number of observation.

In contrast, there is no evidence for long memory in the DM/SF spot rate
changes. This time series is found to exhibit short memory only for the seventies.
These findings might indicate that the presence of long memory is closely linked to
the behavior of the US currency. In particular they may illustrate the importance

of the behavior of the national monetary authorities like the Federal Reserve Bank.
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APPENDIX

A TEMPORAL AGGREGATION

This section reports results of Baillie, Nijman, and Tschernig (1994) on the
temporal aggregation of ARFIMA(p, d, ¢q) processes which are used in section 3.

Let {z:} denote an ARFIMA(2,d,0) process
(1 —a1B—ayBY)(1 — B2y = ¢, & ~ WN(0,02). (14)

If one can observe x; only every m-th period, t = m,2m, 3m, ..., the corresponding

temporally aggregated process {Z;} is denoted by

Iy =w(B)xy, t=m,2m,3m,... (15)
with
1 in case of stock variables
w(B) = (16)
?;61 Bt in case of flow variables

where B denotes the backshift operator. In order to obtain a representation of
the temporally aggregated process, multiply (14) by w(B), (1 + B+...+ B™~1)4
and

(1+aB+...+a7 "B Y1 +aB+...+af ' B™

where a; and ay denote the (possibly complex) roots of the AR(2) polynomial.

Then one obtains
(1 —aB™) (1 —ayB™)(1 — B™)%; = e;, t=m,2m,3m,... (17)
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with

e¢ = (I+aB+...+af "B (1 +aB+...+ay 'B™)  (18)

(1+B+...+B™Yhw(B)e, t=1,2,....

From (18) it can be seen that the process {e:},t = m,2m,3m,...is not a finite
MA process if d # 0 since the power series expansion of (1 + B+ ...+ Bm_l)d
is infinite for noninteger d (see section 2). In the latter case e; is also influenced
by lagged values e;_;,2 > m since its MA representation is infinite. Therefore
{&:} is no longer an ARFIMA(2,d,0) process but an ARFIMA(2,d, c0) process.
Therefore, the class of ARFIMA(p,d,q) processes is not closed with respect to
temporal aggregation.

However, Baillie, Nijman, and Tschernig (1994) show that the order of frac-
tional integration remains the same if d > 0 in case of stock variables and
d > —1 in case of flow variables. Furthermore, they show that if these condi-
tions are fulfilled it is possible to approximate the ARFIMA(p,d, o0) process by
an ARFIMA(p, d, q) process with small q.

The values of the approximating MA(¢) process have to be computed numer-

ically by solving the equation system

I BiBivi - -
ﬂi}%]:p(]m), 7=12,...,q. (19)
1=0 1

where p(ym) = v(jm)/~(0) and v(jm) denote the autocorrelation function and
autocovariance function for lag 7 = jym, respectively. One then chooses a set

of solutions that fulfils the conditions of invertibility. The autocovariances are
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calculated by means of numerical integration from the well-known relationship

between the autocovariance function and the spectral density function

() = /_7r fe(w)e_”wdw (20)

where the spectral density function of {e;} in case of an ARFIMA(2,d,0) process

is given by

fow) = |T+ae™ ...+ aT_le_i(m_l)“’|2|1 +oage™ + ..+ a;”_le_i(m_l)wf

1+ e L+ e_i(m_l)‘“|2f£(w). (21)

fe(w) = 5-0* denotes the spectral density of the white noise process {e;}.

If one computes the autocorrelations of the temporally aggregated MA process
{e:},t = m,2m, ..., it can be seen that they tend quickly to zero independently
of d if the underlying process is an ARFIMA(O0,d,0) process (see Baillie, Nijman,
and Tschernig (1994) for numerical examples). If an AR component is present,

then the fast convergence may start at higher lags. It is this quick convergence

that allows the approximation of the infinite MA process (18) by a low order

MA(q) process.

B ESTIMATING ARFIMA MODELS AND METHODS FOR

PREDICTION

This section summarizes the estimation and prediction methods as well as
their properties for ARFIMA(p, d, q)-GARCH(P, Q) specifications underlying the
empirical analysis in section 3.
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B.1 Estimation

ARFIMA(p, d, ¢) models. Several methods have been proposed to estimate the pa-

rameters of an ARFIMA(p, d, ¢) model from a given series of observations: most
notably the maximization of the exact likelihood in the time domain and the max-
imization of several variants of approximate likelihood functions in the frequency
domain. Although one might expect that among maximum likelihood methods
the exact maximum likelihood method to perform best, this is not necessarily true
if the mean has to be estimated and long memory is present. This is because the
exact time domain method depends on the estimate of the mean which converges
with a slower rate than with v/T to its true value if the stochastic process exhibits
long memory. In contrast, approximate frequency domain methods are indepen-
dent of the mean estimation. For this reason the latter methods perform equally
well in most cases but are less computer intensive. This is the result of a detailed
Monte Carlo simulation of Cheung and Diebold (1994).

Two approximate frequency domain maximum likelihood methods are em-
ployed in this analysis, the Whittle estimator and its approximation (Whittle (1951)).
They will be briefly described in this section. Let A = (¢/,d, 3')" denote the pa-
rameter vector which is to be estimated. Following the presentation of Fox and
Taqqu (1986), the key element of both methods is the approximation of the in-

verted covariance matrix X' ()) of the stochastic process by an expression in the
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frequency domain Ap()) where each element [Ar(N)];x is given by

i i ! =k g,
27 J_y g(wi A)

and g(w; A) = 4 f(w; A). Assuming normality and approximating det(X) ~ ()7,

minimization of the likelihood function leads to the estimator of the white noise

(z = p) Ar(A)(z — p)

5 = ; (22)

where z and p denote the vector of T' observations and the true mean, respectively.
Minimizing (22) then gives the parameter estimates X. If one further uses the

empirical autocovariance function

V() =75 > e(Be(t+ 7)), (23)

one obtains

1 o1 »
5H(A) = —7 T dw. 24
ORI IE= | e (24)
On the basis of the periodogram
=
M) == Y e (25)
T==—T+1

an alternative representation of (24) is given by

GZ(\) = /_ g&"i)dw. (26)

which is known as the Whittle estimator. Dahlhaus (1989) shows its asymptotic

normality and efficiency.
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However, as the numerical integration of the fraction containing the peri-
odogram in (26) is cumbersome and possibly inaccurate, Tschernig (1994) suggests
an alternative computation method of the Whittle estimator that avoids the in-
tegration of the periodogram. It is based on the representation (24) which allows
to make use of Sowell’s (1992) method to compute the autocovariance function of
an ARFIMA(p,d, q) process. Although this method is exact, this algorithm still
requires the computation of various hypergeometric functions if the MA-part is
not zero.

In case of larger data sets a faster solution to the integration problem in (24) is

to approximate the integral by the sum over the Fourier frequencies w, = 27u/T,

u=1,...,T —1. This leads to the widely used approximate Whittle estimator
T-1
. o2r Ip(wy)
() = — g —_— 27
1N =7 = g(wai ) 20

For this estimator Robinson (1990) sketches a way to prove asymptotic efficiency.
To speed up the calculation of the asymptotic covariance matrix H(Ag) of the

parameter estimates, Cheung (1993) proposes the approximation

. 902N, 17"
For model selection, the Akaike Information Criterion (AIC) and the Schwarz
criterion are applied. Concerning the identification of pure long memory processes,

Schmidt and Tschernig (1994) show that using the Schwarz criterion implies the

highest probability to select the true process if the sample size is small. They
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also find that reliable identification of a weak pure long memory process requires
several hundred observations.

Unfortunately, the Schwarz criterion is no longer the optimal choice when
long and short memory components are mixed in an ARFIMA(p,d, q) process as
it punishes overparameterization quite heavily as compared, for instance, with
the AIC. Schmidt and Tschernig (1994) illustrate this point in a Monte Carlo
example using several selected ARFIMA(p, d, q) specifications that are particularly
unfavorable to correct identification. In these cases using the AIC leads to the

best results. Thus, both criteria are applied in this study.

ARFIMA(p, d, ¢)-GARCH(P, Q) models. In the presence of conditionally hetero-

skedastic errors ¢; it is no longer feasible to approximate the likelihood function in
the frequency domain. In this case we follow the approximate maximum likelihood
approach suggested by Baillie, Chung, and Tieslau (1992). Assuming conditional

normality and neglecting starting values one obtains the approximate log likeli-
hood

2
Ini(\|z) = (Ino? + %) (29)
1

T
where the parameter vector A is given by A = (p, o/, d, 5, €, ¢',0')'. Baillie, Chung,
and Tieslau (1992) state that for stationary and invertible ARFIMA-GARCH
processes (1), (8), (9) all parameter estimates will be consistent with normal
convergence rates. For the mean p, however, the convergence rate is 7%°~?, Chung

and Baillie (1992) provide some simulation evidence that this method works well
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for ARFIMA models with at least 100 observations. For model selection the

Akaike Information and Schwarz criteria are applied.

B.2 Prediction

Depending on the number of observations either an exact or an approximate
prediction method is employed for the empirical analysis of foreign exchange rates
in section 3. Prediction theory for ARFIMA(p, d, q) processes is directly available
as they belong to the class of linear stochastic processes. Given processes with
finite variance, the best predictor is usually defined as the predictor with minimal

mean Squared €rror
MSE[X4] = E[(Xegn — Xegn)’] (30)

where )A(H_h denotes the prediction of the random variable X;y,. Due to the

linearity of the ARFIMA process, the best predictor is linear. It is given by

t
)A(t+h = Z QEZ}L):L}_Z (31)
=1

(k)

where the parameters 6, are obtained from the linear equation system
t
B .. S .
Z‘Ql(u)V(Z—J):V(th@—J), i=1,...,1 (32)
=1

and the autocovariances of an ARFIMA (p, d, ¢) model can be computed by means
of Sowell’s (1992) algorithm. As solving the linear equation system (32) becomes
cumbersome for large ¢t 4 h, an attractive alternative for calculating the predictions
XHh is given by the Innovations Algorithm of Brockwell and Davis (1991, pp. 172
—173). Their approach is used in the current study for prediction in small samples.
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For predicting ARFIMA processes, the calculation of their autocovariance

function can be avoided if the infinite AR representation

X, = (L)X + & (33)

¥(L) = o (L)BL)VT (34)

of the ARFIMA(p,d, q) process (1) is used with all X;, 5 <0, set to zero. Then,

the approximate predictor of x;y} is given by

t+h—1
Xepn = Z Yren—i X; (35)

J=1

and X; = z; for j <t (cf. Brockwell and Davis (1991, pp. 183 and 533).
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Table 1: Estimates of ARFIMA(2, d, 0) specifications for daily changes of DM /US-

Dollar rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

aq -0.094>*  -0.081***  -0.109*  -0.049
(0.027) (0.030) (0.036) (0.040)

Qo -0.059=*  -0.021* -0.044> -0.089***
(0.020) (0.021) (0.026) (0.029)

d 0.079* 0.059™** 0.076** 0.076**
(0.022) (0.025) (0.030) (0.033)

¢ 0.49 0.49 0.57 0.38

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimates
are obtained by using the approximate Whittle estimator (27). For the full period the

ARFIMA(2,d, 0) specification was chosen by the ATC.
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Table 2: Parameter values for temporally aggregated ARFIMA(2,d,0) processes

of daily exchange rate changes

Observation frequency

Parameters daily weekly monthly quarterly
changes of DM /US-Dollar rate
o -0.094 -0.001  -0.000 -0.000
Qy -0.059  0.000 0.000 0.000
d 0.079  0.079 0.079 0.079
B -0.013 0.002 0.000
B2 -0.002 0.000 0.000
changes of SF/US-Dollar rate
o -0.056  -0.000  -0.000 -0.000
Qg -0.044  0.000 0.000 0.000
d 0.054  0.054 0.054 0.054
B -0.010 0.001 0.000
B2 -0.001 0.000 0.000

NOTES: the entries for weekly, monthly, and quarterly observation frequencies display the
approximate ARFIMA(2, d, 2) representations of the ARFIMA(2,d,0) process selected by

the AIC for the full period of daily changes using the method described in appendix A.
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Table 3: Estimates of ARFIMA(0,d,0)-GARCH(1,1) specifications for weekly
changes of DM /US-Dollar rates

Parameters 1973 -90 1976 - 90 1980 -90 1973 - 80

d 0.063** 0.027 0.059* 0.110**
(0.026) (0.027) (0.034) (0.050)
13 0.195* 0.238* 1.771* 0.595**
(0.098) (0.127) (0.259) (0.112)
0, 0.076™ 0.109*** 0.130* 0.379*
(0.017) (0.027) (0.048) (0.121)
o3 0.920*** 0.889*** 0.629*** 0.478*
(0.889) (0.028) (0.114) (0.123)
Inl -1584.809 -1315.700 -1019.380 -559.950

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimated
ARFIMA(0, d,0)-GARCH(1,1) specification ranks 1st by the Schwarz criterion and 8th by

the AIC for the full period. The estimation was carried out with the approximate time

domain maximum likelihood method (29).
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Table 4: Estimates of ARFIMA(0,d,0) specifications for monthly changes of
DM/US-Dollar spot rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

d 0.048 0.046 0.091 -0.083
(0.054) (0.056) (0.067) (0.101)

¢ 12.348 10.888**  11.575**  13.044***
(1.216) (1.181) (1.482) (2.024)

Inl -551.191 444177  -322.492  -224.358

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimated

ARFIMA(O, d, 0) specification ranks 1st by the Schwarz criterion and 11th by the AIC for

the full period. The estimation was carried out with the approximate time domain maximum

likelihood method (29).
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Table 5: Estimates of ARFIMA(p,d,q) specifications for quarterly changes of
DM/US-Dollar, SF/US-Dollar, DM/SF spot rates

Parameters DM/US-Dollar SF/US-Dollar DM/SF

d 0.019
(0.102)
o3 0.144 0.120
(0.145) (0.135)
¢ 46 48 9

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. All estimations
are obtained with the Whittle estimator (24). The ARFIMA(0, d, 0) specification for the
DM/US-Dollar ranks 1st by AIC and Schwarz, the MA(1) specification for the SF/US-Dollar
rate ranks 2nd by the ATC and Ist by the Schwarz criterion and the MA(1) specification for

the DM/SF rate ranks Ist by both criteria.
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Table 6: Out-of-sample forecasts

Exchange rate forecasting horizon weekly data monthly data quarterly data

DM /US-Dollar 6 months -7.0% -3.3% +4.1%
12 months -3.0% -2.1% +0.6%
SF/US-Dollar 6 months “4.1% -4.2% 1.1%
12 months -0.2% -0.6% 0.0%

NOTES: This table shows the improvement or deterioration of the mean squared error
(13) of an ARFIMA(p, d, q) specification relative to the mean squared error of a random
walk with drift specification. For both exchange rates an ARFIMA(0, d, 0) specification is
used. The initial predictions are based on the estimation period from January 1, 1973 until
December 31, 1983. Until the predictions reach January 1, 1988, they are repeated while the
estimation period is extended each time by one period. For quarterly data the predictions
are carried out by means of the exact prediction method using the Innovations Algorithm
of Brockwell and Davis (1991). All other predictions are computed with the approximate
method ((34) and (35)).
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Table 7: Estimates of ARFIMA(2,d,0) specifications for daily changes of SF/US-

Dollar rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

aq -0.056** -0.060* -0.080** -0.002
(0.027) (0.030) (0.037) (0.043)

Qo -0.044>*  -0.030 -0.027 -0.067*
(0.020) (0.022) (0.026) (0.030)

d 0.054** 0.046* 0.064** 0.022
(0.023) (0.026) (0.031) (0.036)

¢ 0.64 0.65 0.65 0.62

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis of d = 0 are marked by *, **, and ***, respectively. The
estimates are obtained with the approximate Whittle estimator (27). For the full period the

ARFIMA(2,d, 0) specification was chosen by the ATC.
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Table 8: Estimates of ARFIMA(0,d,0)-GARCH(1,1) specifications for weekly
changes of SF/Dollar spot rates

Parameters 1973 -90 1976 - 90 1980 -90 1973 - 80

d 0.049* 0.030 0.045 0.117
(0.027) (0.029) (0.035) (0.048)
13 0.213* 0.192 2,113 0.353**
(0.123) (0.126) (0.379) (0.176)
0, 0.097* 0.104*** 0.097** 0.215***
(0.019) (0.018) (0.042) (0.064)
o3 0.903*** 0.899*** 0.704* 0.777
(0.017) (0.016) (0.168) (0.070)
Inl -1707.434 -1415.019 -1062.044 -634.283

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%

*, %, and ***, respectively. The estimated

with respect to the null hypothesis are marked by
ARFIMA(0, d,0)-GARCH(1,1) specification ranks 1st by the Schwarz criterion and by the

AIC for the full period. The estimation was carried out with the approximate time domain

maximum likelihood method (29).
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Table 9: Estimates of ARFIMA(0,d,0) specifications for monthly changes of
SF/US-Dollar spot rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

d 0.040 0.058 0.082 -0.101
(0.079) (0.062) (0.073) (0.104)

¢ 15.203 14.345=*  13.653**  16.779***
(1.497) (1.556) (1.748) (2.608)

Inl -572.619  -467.609  -322.562  -234.859

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimated

ARFIMA(O0, d, 0) specification ranks 1st by the Schwarz criterion and 7th by the AIC for the

full period. The estimation was carried out with the approximate time domain maximum

likelihood method (29).
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Table 10: Estimates of various ARFIMA(p,d, q) specifications for daily changes
of DM/SF rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

Qay -0.959*** -0.7127 -0.198*
(0.089) (0.305) (0.024)
Qo -0.346™** -0.494**  -0.051**
(0.081) (0.206) (0.024)
d 0.016
(0.013)
51 -0.823** -0.717 >
(0.092) (0.295)
32 -0.193* -0.549***
(0.086) (0.194)
¢ 0.18 0.13 0.08 0.34

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimates
are obtained with the approximate Whittle estimator (27). For each period, the specification

was chosen separately by the AIC.
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Table 11: Estimates of ARFIMA(0,d,0)-GARCH(1,1) specifications for weekly
changes of DM/SF spot rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - R0

d 0.038 0.055 -0.004 0.075*
(0.029) (0.034) (0.037) (0.042)

¢ 0.176* 0.168™** 0.151™* 0.242%**
(0.027) (0.025) (0.035) (0.042)

0, 0.239*** 0.263*** 0.212*** 0.389***
(0.050) (0.056) (0.057) (0.119)

o3 0.665*** 0.628*** 0.686*** 0.495***
(0.071) (0.074) (0.087) (0.123)

Inl -916.370  -726.307  -483.576  -427.236

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimated
ARFIMA(0, d,0)-GARCH(1,1) specification ranks Ist by the Schwarz criterion and 2nd by
the AIC for the full period. The estimation was carried out with the approximate time

domain maximum likelihood method (29).
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Table 12: Estimates of AR(1)-ARCH(1) specifications for monthly changes of
DM/SF spot rates

Parameters 1973 - 90 1976 - 90 1980 - 90 1973 - 80

aq 0.084 0.131 0.151 0.031
(0.081) (0.079) (0.093) (0.104)

¢ 2.373 1,748 1.698*** 3.855%**
(0.311) (0.261) (0.285) (0.775)

0, 0.338*** 0.425*** 0.160 0.346™*
(0.117) (0.135) (0.123) (0.175)

Inl -403.517  -317.669  -211.111  -182.290

NOTES: standard errors are given in parenthesis. Significance levels of 10%, 5%, and 1%
with respect to the null hypothesis are marked by *, **, and ***, respectively. The estimated
AR(1)-ARCH(1) specification ranks lst by the Schwarz criterion and by the AIC for the

full period. The estimation was carried out with the approximate time domain maximum

likelihood method (29).
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