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Long memory in the form of fractional integration is analysed in stock market
returns. Special emphasis is placed on taking into account the potential bias caused
by neglected outliers in the data. It is first shown by a simulation experiment that
outliers will bias the estimated fractional integration parameter towards zero. In a
monthly data set, consisting of stock market indices of 16 OECD countries, statis-
tically significant long memory is found for three countries. In one of these long
memory is only found when outliers are first taken into account.

I . INTRODUCTION

Long memory in time series data manifests itself as tem-

poral dependence over long periods of time. Usually this is

in economics considered as significant autocorrelations at

long lags, of up to hundreds of periods. Such models have

recently been examined quite extensively in the theoretical

literature (see Baillie, 1996, for an introduction). However,

one aspect mostly missing from this work is the effect of

outliers on these models. It is by now well known that

outliers will bias estimators in several other time series

models, and there is no reason to assume that the same

would not be true also of long memory models. The long

memory model that will be considered in this study is the

autoregressive fractional integration moving average

(ARFIMA) model, where the fractional integration par-

ameter determines the long memory properties of the data.

The closest analogy with estimating the fractional inte-

gration parameter is perhaps that of estimating an autore-

gressive parameter. In that case it has been clearly

established that the presence of certain types of outliers

will bias the traditional (nonrobust) estimates towards

zero (see, e.g., Tsay, 1986; Chen and Liu, 1993).

Intuitively it seems likely that this could happen also in

fractional integration models, although proving it analyti-

cally may not be easy. In this study therefore, this issue is

first examined by some Monte Carlo simulation experi-

ments.

There have been several applications of long memory

models to empirical economic data, including stock market

returns. Earlier research has mostly used a semiparametric

estimator by Geweke and Porter-Hudak (1983), which

however suffers from a drawback. The application of this

estimator requires a choice for the number of periodogram

ordinates to be used in the estimation, but it is not clear

which value should be used in practice. Different values

usually give somewhat different estimates. In addition, in

the presence of short range dependencies (say, AR or MA

terms in the data generating process) the GPH estimator is

known to be biased in small samples (Agiakloglou et al.,

1992). Baillie (1996) provides a further discussion on these

topics. In this study more recently proposed maximum like-

lihood estimation methods will be used. These have better

small sample properties, and will be discussed briefly in the

next section.

In the empirical part of this paper monthly stock market

indices from 16 OECD countries, and a daily US stock

market index will be examined by estimating ARFIMA

models for them. Earlier research, in trying to find statis-

tically significant long memory for this kind of data, has

come up with mixed results. Nevertheless, at least some

evidence of long memory has been found for some

monthly, weekly and daily stock market indices by Crato

(1994), Cheung and Lai (1995), Barkoulas and Baum

(1996), Barkoulas et al. (2000) and Sadique and

Silvapulle (2001).

Smaller markets in the monthly data set may be the most

likely place to find significant long memory. Since small

markets do not always seem to behave as expected, and

may be less efficient than larger markets, it is possible
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that long memory will be detected in them. This point was
raised by Barkoulas et al. (2000), who examined weekly
returns in the Greek stock market during the 1980s, and
found clear evidence of statistically significant long mem-
ory.

Furthermore, if the presence of outliers biases the results
for long memory tests and estimates, as will be shown later
to be the case for ARFIMA estimates, it is also possible
that significant long memory is hidden by outliers, and has
therefore not been reliably detected so far. To see whether
this is indeed the case, models where potential outliers have
been taken into account with dummy variables will also be
estimated for the same data. By comparing the two sets of
results (i.e. from the basic and the outlier models), it can be
seen whether the outliers make a difference with regard to
inference about long memory.

II . THE ARFIMA MODEL AND OUTLIERS

The long memory model used in this paper is the standard
autoregressive fractional integration moving average, or
ARFIMA(p; d; q), model. For the observed series yt it is
given by

�pðLÞð1� LÞdðyt � �Þ ¼ �qðLÞ"t; t ¼ 1; . . . ;T ð1Þ

where L is the lag operator (Ljyt ¼ yt�j),
�pðLÞ ¼ 1� �1L � . . .� �pL

p is the autoregressive, and
�qðLÞ ¼ 1þ �1L þ . . .þ �qL

q the moving average lag poly-
nomial. The differencing parameter d need not be an inte-
ger, but integer values of d lead to traditional ARIMA
models. The fractional differencing operator ð1� LÞd is
defined for non-integer d by a binomial expansion

ð1� LÞd ¼
X1
j¼0

d
j

� �
ð�LÞj ð2Þ

In addition, the usual assumptions that "t � NIDð0; �2Þ,
that all roots of the AR and MA polynomials are outside
the unit circle, and that they do not have common roots,
will be made.

The long range properties of such series depend on the
value of d. For d 2 ð0; 0:5Þ the (theoretical) autocorrela-
tions are all positive. They decay hyperbolically to zero
as the lag length increases, compared to the usual exponen-
tial decay in the case of a stationary ARMA model with
d ¼ 0. This property is also one of the definitions of long
memory. For d 2 ð�0:5; 0Þ the series is said to exhibit inter-
mediate memory. In this case the autocorrelations are all
negative, and decay hyperbolically to zero. For d 5 0:5 the
series are no longer covariance stationary. For a more

detailed discussion see, for example, Baillie (1996) or
Ooms and Doornik (1999).
It will be assumed that the observed data consists of an

underlying ARFIMA series, and possibly a few outliers
that occur due to exogenous shocks at random points in
time. The study will distinguish between four outlier types,
described below. Such outliers can be taken into account in
estimation by the use of appropriate dummy variables. In
practical work, the potential dummy variables have of
course first to be somehow identified. In this study the
series will first be approximated with ARMA models,
and an outlier detection procedure used to detect all sig-
nificant outliers in the fitted ARMA models. The detected
outliers will then be incorporated into the ARFIMA mod-
els with corresponding dummies, and their statistical sig-
nificance tested in the final ARFIMA models.
The ARFIMA model with dummy variables, called the

outlier model from now on, can be written as

�pðLÞð1� LÞdðyt � x0
t�Þ ¼ �qðLÞð"t þ z0t	Þ ð3Þ

where dummies for two different kinds of outlier types are
included. First, the X matrix includes dummy variable vec-
tors for additive outlier types. These can be thought to
occur as if on top of the underlying series. The additive
outlier types are a single additive outlier (AO) which only
affects one observation, a permanent level shift (LS) which
affects all following observations, and a temporary change
(TC) outlier, whose effect lies between these two extremes.
As is usual, temporary change outliers are here assumed to
die out exponentially, and the values of the dummy vari-
able from the date of the outlier on are 1; 0:7; 0:72; 0:73; . . ..
Dummy variable vectors for the second kind of outlier, so
called innovational outliers (IOs), are included in the Z
matrix. This outlier type can be thought of as an abnormal
shock (in the "t variable), the effect of which is propagated,
via the data generating ARFIMA process, into the follow-
ing observations as well. See Chen and Liu (1993) for a
more thorough discussion on these outlier types.
The estimation of ARFIMA models will be done with

the Arfima package version 1.0 (Doornik and Ooms, 1999)
for Ox (Doornik, 1998).1 The Arfima package allows the
use of three parametric estimation methods. These are the
exact maximum likelihood (EML), nonlinear least squares
(NLS) and modified profile maximum likelihood (MPL).
See Doornik and Ooms (1999) for the details of these
methods and further references on them. In addition,
Hauser (1999) examines the small sample properties of
the EML and MPL estimators in various situations. The
outlier robustness of these estimators is examined in the
next section.
It seems that for simple ARFIMA(1, d, 1) models with-

out outliers, the MPL method is preferable to the EML
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1 See also the companion article by Ooms and Doornik (1999), which discusses the implementation of the software.



method (Ooms and Doornik, 1999). Unfortunately, the
MPL method in the current version of Arfima package
for Ox does not allow dummies for innovational outliers
in the model, and therefore the EML estimation method
will be used in the empirical part of this paper.

III . OUTLIER ROBUSTNESS OF LONG
MEMORY ESTIMATES

It is already known that level shifts cause problems for
accurate estimation of ARFIMA model parameters (Bos
et al., 1999). For other outlier types similar studies have
apparently not yet been done, apart from Beran (1994),
who considers the effects of additive outliers on the exact
maximum likelihood estimator, and proposes a robust esti-
mator as an alternative. However, his results are based on a
very limited, and, with respect to the magnitudes of the
outliers, somewhat unlikely simulation design. In this sec-
tion the effects of additive outliers are therefore examined
with some more extensive simulation experiments.

The simulation results presented here are for samples of
500 observations, which is a moderate sample size for ana-
lysing long memory. The true fractional differencing par-
ameter d ¼ �0:4;�0:3; . . . ; 0:3; 0:4, the mean of the series
is set to zero, and the error variance �2 equal to one. To
generate fractionally integrated series, the Choleski decom-
position method is used (see Doornik and Ooms, 1999).
Outliers, both negative and positive with equal probabil-
ities, are then added to the series so that each observation is
an outlier with probabilities 0 (i.e. no outliers), 0.5, 1, 2.5

and 5%, and the outlier magnitudes used are 3, 5 and 7. As
will be seen later, these outlier probabilities are reasonable
in the sense that the amounts of detected outliers in the
empirical data are quite similar to the ones used in the
simulations. The outlier magnitudes, on the other hand,
may even be viewed as somewhat conservative, compared
to the largest observations in the empirical data, for ex-

ample during the stock market crash of 1987.
The data generating models have no autoregressive or

moving average terms, and are therefore all
ARFIMAð0; d; 0Þ, or FIðdÞ models. It would obviously
be interesting to examine the effects of outliers also on
models where there are autoregressive and moving average
terms, but I will at the moment concentrate only on the
simplest situation. Note also, that in an ARFIMAð0; d; 0Þ
model, there is no difference between additive and innova-
tional outliers. The effects of temporary changes and level
shifts will also not be considered here.
In the estimation stage, the true model is assumed to be

known, along with the true mean of the series. This is of
course an ideal situation, and unlikely in practice.
However, it is adequate for our purposes, since the interest
here is only on the effects of outliers. All simulations are
based on 1000 replications. It should perhaps also be
noted, that the estimation algorithms failed to converge
in only a handful of the simulated samples. For this sample
size they are therefore very reliable.
Table 1 has the mean of all of the replications for the

EML estimator.2 As can be seen from the table, in the
absence of outliers the EML estimator is unbiased. When
outliers occur in the data, however, the estimator becomes
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2 The NLS and MPL estimators give essentially the same results, and the results for these two estimators will therefore not be tabulated
here to save space. They are, however, as well as other unreported results, available from the author.

Table 1. Simulated mean estimates of the long memory parameter


 !

d

70.4 70.3 70.2 70.1 0.0 0.1 0.2 0.3 0.4

0 0 70.403 70.304 70.202 70.102 70.001 0.099 0.197 0.295 0.398

0.005 3 70.353 70.275 70.190 70.097 70.003 0.092 0.192 0.287 0.387
5 70.306 70.240 70.170 70.090 70.004 0.088 0.181 0.278 0.373
7 70.261 70.213 70.151 70.080 70.003 0.082 0.169 0.257 0.352

0.01 3 70.319 70.255 70.176 70.094 70.003 0.090 0.187 0.282 0.377
5 70.253 70.207 70.149 70.080 0.000 0.083 0.169 0.258 0.353
7 70.201 70.164 70.120 70.067 70.003 0.069 0.148 0.233 0.323

0.025 3 70.258 70.211 70.152 70.081 70.003 0.082 0.172 0.262 0.354
5 70.178 70.147 70.107 70.059 70.002 0.064 0.141 0.220 0.305
7 70.125 70.102 70.078 70.043 70.003 0.047 0.109 0.180 0.264

0.05 3 70.203 70.166 70.118 70.066 70.002 0.070 0.149 0.233 0.326
5 70.122 70.102 70.074 70.043 70.002 0.048 0.110 0.180 0.260
7 70.076 70.064 70.048 70.028 70.003 0.032 0.077 0.134 0.211

Note: The results are based on 1000 replications of exact maximum likelihood estimation. The sample size is 500, d is the true fractional
integration parameter, 
 the probability of an outlier occurring at each observation, and ! the outlier magnitude.



biased towards zero. More and larger outliers cause also
larger biases. This is a clear trend and can be seen with all
parameter combinations. The standard deviations of the
estimates also grow in the presence of outliers. Note also,
that the biases are larger for negative values of d.

The same experiments were also repeated for samples of
100 observations. These results will, however, not be
reported here. Suffice it to note, that the biases of the esti-
mators are roughly similar to those with 500 observations,
especially for positive values of d. In addition, with less
observations there is more variability in the results, and
the standard deviations of the estimates are also larger.
Overall, however, roughly the same conclusions can be
drawn from both sample sizes.

Although the outlier induced biases are not as dramatic
as for some other estimation situations, they are neverthe-
less notable. With larger and more frequent outliers the
estimates approach zero, which was also the finding of
Beran (1994). It seems therefore warranted to conclude
that it is essential to take any potential outliers into
account when estimating ARFIMA models – this is of
course true with any other model as well. Sometimes this
is done in the literature at least informally (in, e.g. Ooms
and Doornik, 1999), but mostly, and unfortunately, it
seems not.

IV. EMPIRICAL RESULTS

The data series in this section are monthly differenced loga-
rithms of stock price indices for 16 OECD countries,

mostly from 1960 to 1999, which gives roughly 475 obser-
vations. Full details of the series, and the data source, are
given in the Appendix.
Potential outliers were first identified from each series

with the program TRAMO (Gómez & Maravall, 1994,
1995), which uses a slight modification of the Chen and
Liu (1993) outlier detection algorithm. If one can assume
that a time series can be approximated with an ARMA
model, this procedure is commonly used to detect any
abnormal observations. In this study the use of such a
black box method can be motivated by the fact that the
main interest is on examining the robustness (with respect
to a few isolated outliers) of the inferences regarding the
long memory properties of stock returns. The outlier detec-
tion algorithm will find the most unusual observations,
which can then be taken into account in the final
ARFIMA models.
In addition to outlier detection, the automatic model

selection option of TRAMO, which is based on the
Schwarz information criteria, was also used. The results
gave therefore also preliminary AR and MA lag lengths
to use in the next stage of estimating the ARFIMA models.
The critical value used in the outlier detection was 4.0. This
is considered a low sensitivity value for this sample size,
meaning that only the most outlying observations will be
detected as outliers. All four outlier types (AO, LS, TC, IO)
were searched for.
The dates, types and signs of the detected outliers are

given in Table 2. Note first that no level shifts were detected
in any of the series. The number of outliers per series varies
from one (Germany and Japan) to eleven (Ireland), the
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Table 2. Detected outliers

Outlier dates Outlier types

Australia 68:5, 74:6, 87:10, 87:11 IOþ;TC�; IO�;AO�
Germany 87:11 AO�
Belgium 85:4, 87:11 AO�; IO�
Canada 80:3, 87:10, 98:8 IO�;AO�; IO�
Denmark 72:10, 73:11, 80:10, TCþ;AO�; IOþ;

83:1, 83:2, 83:8 AO�;TCþ; IOþ
Spain 86:3, 87:11 TCþ; IO�
Finland 66:9, 68:4, 68:6, 87:1, AO�; IOþ;AOþ;AO�;

92:10, 98:8, 98:11 TCþ;TC�;TCþ
France 82:3, 82:4, 87:10, 88:2 AO�;AOþ; IO�;AOþ
Ireland 74:10, 75:2, 75:7, 77:1, IO�;TCþ;AO�;TCþ;

86:3, 87:11, 87:12, 88:2, AOþ; IO�;AO�; IOþ;
90:9, 91:3, 98:9 IO�;AOþ;AO�

Italy 81:7, 94:4, 94:5, 94:7 AO�;AO�;TCþ;TC�
Japan 92:9 AOþ
The Netherlands 75:1, 81:9, 83:1, 87:11 IOþ;AO�;AO�; IO�
Norway 74:9, 83:1, 87:11 IO�;TCþ; IO�
Sweden 87:10, 90:9, 92:11 IO�; IO�;AOþ
UK 73:12, 74:6, 75:1, AO�;TC�; IOþ;

75:2, 87:11 IOþ;AO�
USA 62:6, 87:10 AO�;TC�

Note: The outlier type indicates also the sign of each outlier ðþ=�Þ.



mean being just under four. The share of outliers (out of all

observations) varies therefore from 0.2% to 2.2%, which is
not an unreasonable amount of outlying observations in
financial data, and agrees also with the outlier probabilities
used in the simulation experiment of the previous section.

Roughly two-thirds of the detected outliers are negative,
which is an indication of negative skewness in the series.
And as could be expected, October/November 1987 is

detected as an (negative) outlier in most series. These
detected outliers were then used in the next stage as dum-
mies in the estimated ARFIMA outlier models (dummies

for AOs and TCs as X variables, and for IOs as Z vari-
ables; see Equation 3).

The ARMA model selected for the series was usually
MA(1), apart from the following exceptions. An

ARMA(0,0) model was selected for Canada, Finland,
Italy and Norway, and an AR(1) model for Denmark
and Ireland. Full estimation results will not be given here

to save space, since the main interest is on the fractional
integration parameters. Suffice it to note, that the dummy

variables were always statistically highly significant, usually

at levels below 0.1%, and the ARMA parameters were
significant at least at the 10% level. The outlier magni-
tudes, or the estimated parameter values of the dummies,
were larger than 0.1 in absolute value, and many were over

0.2. For comparison, the standard deviations of the series
range mostly from 0.04 to 0.05. Observations as large as
seven times the series’ standard deviations are therefore not

unusual in data of this kind. The residual diagnostics,
namely normality, ARCH and remaining autocorrelation,
were quite often significant. However, often the hypothesis

of normality would not have been rejected in the outlier
model, which is of course due to the normalizing effect of
removing the outliers.
Table 3 gives the estimation results. In addition to the

selected ARMA lag orders and fractional integration par-
ameter estimates, the residual standard deviations are given
for the basic and the outlier models. The last column gives

also the likelihood ratio (LR) for the two models.
Examining first the results for the basic models without
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Table 3. Estimated ARFIMA models

ARMA

Basic model Outlier model

d̂dB �̂�B d̂dO �̂�O LR

Australia (0,1) 70.073 0.051 70.0086 0.046 103.94
(0.053) (0.057)

Germany (0,1) 0.048 0.038 0.043 0.036 48.062
(0.052) (0.050)

Belgium (0,1) 70.051 0.042 70.014 0.039 73.070
(0.047) (0.044)

Canada (0,0) 70.056 0.049 70.039 0.045 72.004
(0.039) (0.036)

Denmark (1,0) 0.13 0.050 0.10 0.045 106.18
(0.058) (0.056)

Spain (0,1) 0.019 0.051 70.0028 0.049 45.931
(0.048) (0.049)

Finland (0,0) 0.15 0.053 0.17 0.045 153.81
(0.038) (0.035)

France (0,1) 70.054 0.056 70.045 0.050 100.94
(0.053) (0.048)

Ireland (1,0)/(2,0) 70.064 0.053 0.31 0.042 217.50
(0.098) (0.069)

Italy (0,0) 70.025 0.091 0.063 0.070 223.20
(0.038) (0.038)

Japan (0,1) 0.053 0.040 0.066 0.040 16.322
(0.049) (0.049)

The Netherlands (0,1) 70.071 0.055 0.023 0.040 292.19
(0.051) (0.049)

Norway (0,0) 0.041 0.066 0.013 0.060 95.886
(0.037) (0.035)

Sweden (0,1) 70.0040 0.051 0.044 0.048 69.315
(0.053) (0.054)

UK (0,1) 70.053 0.043 0.013 0.037 142.86
(0.048) (0.047)

USA (0,1) 70.047 0.042 70.012 0.041 26.755
(0.057) (0.057)

Note: ARMA denotes the lag orders of the estimated models (basic model/outlier model in the case of Ireland), and LR is the logarithmic
likelihood ratio for the two models.



the dummies, given in the second and third column of
Table 3, statistically significant (at the 5% level) estimates
of d are obtained only for Denmark and Finland. For the
other series no clear indication of long memory can be
found.

Results for the outlier models are given in the fourth and
fifth columns of Table 3. The estimated ARMA parameters
did not usually change much when the outliers were taken
into account with dummies. The same is true for the
fractional integration parameter. For Finland and
Denmark, the countries with significant long memory in
the basic model, the estimates of d increase and decrease
slightly, respectively, but remain statistically significant.
Most of the residual standard deviations, on the other
hand, are considerably decreased when the dummies are
added to the models. The dummies therefore explain a
considerable amount of the variation in the data, which
is also demonstrated by the clearly statistically significant
LR test statistics.

All in all there are therefore no major changes in the
estimates of d, and in the conclusions that can be drawn
from them. The one notable exception is Ireland, for which
there is overwhelming evidence of statistically significant
long memory in the outlier model. The estimated d grows
from � 0:064 to 0.31 when the dummies are added to the
model. In this case, therefore, taking the outliers into
account changes the inference regarding long memory dra-
matically. Also, in this case, different AR lag orders are
selected in the two ARFIMA models. The whole model
is therefore changed when the outliers are taken into
account. The influence of the outliers in the Irish data
can also be seen from Fig. 1, which plots first the original
return series, and then residuals, both from the basic and
the outlier ARFIMA models.3; 4

V. CONCLUSIONS

The simulation experiment in this paper shows clearly that
neglected outliers may result in biased estimates of the

fractional integration parameter. There seems to be no

difference in the bias between the most popular estimation

methods. Furthermore, the empirical results for stock

market returns show that this possibility is not only

theoretical. The influence of outliers does not seem to

be great in most cases, but for the Irish monthly data

they were decisive for inference regarding the fractional

integration parameter. And as hypothesized, in the

monthly data long memory is more likely found in smaller

stock markets than in larger ones. Statistically significant

fractional integration parameters were indeed found only

for Denmark, Finland and Ireland, which are all small

markets.

Based on these results, it seems therefore imperative that

any potential outliers are taken into account also in esti-

mating ARFIMAmodels. Nevertheless, the ultimate test of

whether taking outliers into account in an analysis such as

this one has any value, depends naturally on the final use of

the model. If, for example, the aim is in the forecasting of

stock market returns, it matters little whether some par-

ameter estimate is statistically significant or not at some

arbitrary level. To justify using an outlier model for this

purpose, one should first demonstrate that the forecasts are

improved if an outlier model is used instead of the basic

one. In this study, this issue has not been tackled at all, but

earlier research suggests that there may be at least some

value in using ARFIMA models in forecasting over longer

horizons (Barkoulas et al., 2000).

Further research should perhaps consider other kinds of

returns as well, for example for individual stocks, and for

different data frequencies. Since aggregation, both tem-

poral and cross-sectional, tends to decrease the amount

and magnitude of outliers in the data, moving to individual

stocks could produce interesting results. Another interest-

ing topic is the possible long memory in absolute values of

the returns (as a measure of volatility). The present avail-

ability of easy-to-use computer software has made this kind

of work relatively easy. As for theoretical work, further

research on the effects of outliers for ARFIMA models

seems also warranted.
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3 One improvement to this analysis would be to include a GARCH specification for the errors of these ARFIMA models, since the
variance of the series is clearly not constant. This could also have an effect on the outlier detection, so that less outliers could be detected
in ARFIMA-GARCH models than what was found earlier. To consider this possibility, an attempt was made to estimate
ARFIMAðp; d; qÞ-GARCH(1,1) models for the three series with statistically significant long memory. The models were estimated first
without any dummies, and then with dummies for the outliers detected above, the idea here being that any statistically insignificant
dummies can then be dropped from the model. In some of the models the estimation procedure failed to converge, even after some
experimentation with different starting values and optimization parameters. This is no doubt due to the increased complexity of the
models, relative to the rather small number of observations. All in all it seemed, however, that taking the GARCH structure in the series
into account had very little effect on the point estimates of the long memory parameter and on the significance of the dummies.
4 The same analysis was also carried out for daily returns of the Dow Jones Industrial Average index. Data from 1986 to 1999 was first
divided to seven periods of 500 observations each. Full results for these data will not be presented in the text, but some brief comments on
the findings can be made. The number of detected outliers in these samples varied from one to eight. Statistically significant values of d
were found in the basic model for three samples: these were all negative, indicating intermediate memory. In the outlier models, nearly
significant estimates were found in two additional samples. Taking the outliers into account therefore had some influence on the long
memory estimation results in this data as well.
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Fig. 1. Returns and ARFIMA residuals (basic and outlier models) for Ireland



APPENDIX: DATA SOURCE AND SAMPLES

The monthly data is from the OECD database. Series
codes and the samples are as follows. Australia, series
AUOCSPRC (ASE all ordinaries), from 1960:1 to 1999:9.
(West) Germany, series BDOCSPRC (CDAX) from 1960:1
to 1999:10. Belgium, series BGOCSPRC (BSE all shares),
1960:1 to 1999:8. Canada, series CNOCSPRC (TSE 300
composite), from 1960:1 to 1999:9. Denmark, series
DKOCSPRC (CSE all shares) from 1960:1 to 1999:9.
Spain, series ESOCSPRC (MSE general index) from
1961:1 to 1999:10. Finland, series FNOCSPRC (HEX
all shares) from 1960:1 to 1999:9. France, series

FROCSPRC (SBF 250), from 1960:1 to 1999:10. Ireland,
series IROCSPRC (ISEQ index overall), from 1960:1
to 1999:10. Italy, series ITOCSPRC (Milan stock
exchange) from 1960:1 to 1995:2. Japan, series
JPOCSPRC (TSE TOPIX) from 1960:1 to 1999:9.
The Netherlands, series NLOCSPRC (CBS all shares)
from 1960:1 to 1999:8. Norway, series NWOCSPRC
(Oslo stock exchange) from 1960:1 to 1998:5. Sweden,
series SDOCSPRC (AFGX index) from 1960:1 to
1999:8. United Kingdom, series UKOCSPRC (FTSE
actuaries non-financial) from 1960:1 to 1999:9. USA,
series USOCSPRC (S&P industrials) from 1960:1 to
1993:6.
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