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It is argued that the study of the correct speci® cation of returns distributions has
attractive implications in ® nancial economics. This study estimates Levy± stable (fractal)

distributions that can accurately account for skewness, kurtosis, and fat tails. The

Levy± stable family distributions are parametrized by the Levy index (¬), 0 < ¬ µ 2,

and include the normal distribution as a special case (¬ ˆ 2). The Levy index, ¬, is the

fractal dimension of the probability space. The unique feature of Levy± stable family

distributions is the existence of a relationship between the fractal dimension of the

probability space and the fractal dimension of the time series. This relationship is simply
expressed in terms of Hurst exponent (H), i.e. ¬ ˆ 1=H. In addition, Hurst exponent is

related to long-memory eŒects. Thus, estimating the Levy index allows us to determine

long-memory eŒects. The immediate practical implication of the present work is that on

the one hand we estimate the shape of returns distributions and on the other hand we
investigate the fractal dimensions. Overall, then, the Levy± stable family distributions

methodology appears to be useful for analysing the returns distribution, for under-

standing the fractal dimension of returns and for providing the researcher with direct

insights into the long-memory eŒects of stock returns. A second approach to test the

long memory hypothesis is attempted in this paper. This test involves an estimation of
the ARFIMA models. A comparative analysis of the two approaches indicates the

existence of long-memory in the Athens Stock Exchange. The results of this study are

based on a sample of stocks from the Athens Stock Exchange using daily data.

I . INTRODUCTION

It is widely accepted that stock returns (1) follow a fat

tailed non-normal distribution, (2) possess autocorrelations

and partial autocorrelations that do not decay quickly to

zero, and (3) seem to have non-periodic cycles. Evidence

supporting (1), (2) and (3) is found in several empirical

studies.

Normality is the exception rather than the rule in the

stock markets. See Mandelbrot (1963), Fama (1965),

Fielitz and Smith (1972), Blattberg and Gonedes (1974),

Hsu et al. (1974), Simkowitz and Beedles (1980), Fielitz

and Rozelle (1983), Kon (1984), Peters (1991), and Peters

(1992).

In the case of the Athens Stock Exchange, Panas (1990)

found non-normality of the distribution of stock returns.

The behaviour of stock returns can be explained by the

family of stable distributions. A number of articles have

been written in recent as well as more distant times on the

subject of stable distributions with characteristic exponent

¬ between 1 and 2. Stable distributions are described

by their characteristic function, which causes estimation

and test procedures problems. Most studies, however,

fail to provide statistical tests when the characteristic

exponent (ˆ ¬) is diŒerent from two. In this paper, a

statistical technique known as the bootstrap technique is

employed to test the statistical signi® cance of the charac-

teristic exponent.
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The conventional linear methods fail to capture the be-

haviour of stock returns, described by (2) and (3). In such

cases non-linear models such as ARCH (AutoRegressive

Conditional Heteroscedastic), ARFIMA (AutoRegressive

Fractionally Integrated Moving Average) and chaos are

more appropriate.

Several authors (Panas and Stengos (1992), Koutmos et

al. (1993), Papaioannou, G. I. and Philippatos, G. C.

(1998) and Theodosiou et al. (1993)) have applied non-

linear time series methods to study the dynamic processes

of stock returns in the Athens Stock Exchange. Most

recently, Barcoulas and Travlos (1998) have found empiri-

cal evidence that the time path of stock returns of the

Athens Stock Exchange is consistent with nonlinear deter-

ministic models (Chaos).

Another approach of interest deals with the estimation

of stable distributions. Stable distributions are needed not

only in the valuation of the distribution of stock returns

but also to determine the memory of stock return pro-

cesses. The unique feature of stable distributions is that

they are fractal ± see Peters (1994). For these stable distri-

butions the characteristic exponent `¬’ is equal to the

inverse of the Hurst exponent ( 5 H).

For 1=¬ < H < 1, positive increments tend to be fol-

lowed by positive increments (persistence); that is, we

have a long-memory eŒect that occurs over multiple time

series scales, whereas for 0 < H < 1=¬ positive increments

tend to be followed by negative increments (antipersist-

ence).

Thus, the estimates of ¬ imply that knowledge of one

characteristic parameter of a stable distribution gives us

information about another classical exponent developed

by Hurst (1951).

However, implementation of the above approach is

based on the parameter of the stable distribution and it is

valid only if the stock returns have a stable distribution.

One technique that does not depend on knowledge of the

underlying distribution is the ARFIMA models. ARFIMA

models generalize linear ARIMA models by allowing for

non integer diŒerencing powers. Granger and Joyeux

(1980) and Lo et al. (1988) proposed the use of

ARFIMA procedures as long-memory models. A list of

signi® cant papers on long-memory analysis for stock

returns includes Aydogan and Booth (1988), Lo (1991),

Cheung et al. (1993), Cheung and Lai (1995) and

Barkoulas and Baurn (1996).

The purpose of this paper is to present the estimates of

the Hurst exponent, by estimating the stable distribution.

This, in turn, will allow description of the distribution of

stock returns and the fractal dimensionality of the under-

lying process. Although stable distributions and ARFIMA

models are two completely diŒerent procedures, it is of

interest to investigate whether they lead to the same con-

clusions regarding the behaviour of stock returns.

In addition, both stable distributions and ARFIMA

models are tested using a sample of daily returns on thir-
teen stocks traded on the Athens Stock Exchange. The

structure of the paper is as follows. Section II brie¯ y

describes the methodology. Section III contains the empiri-

cal results. The ® nal section contains the summary and

conclusions.

II . METHODOLOGICAL APPROACH

Let Zit ˆ log …Pit=Pi;t¡1† be the daily log price relatives.

Before proceeding with the analysis the unit root test will

be conducted to determine whether the underlying ® nancial

time series is a stationary process. To do that, the augmen-

ted Dickey± Fuller (ADF) (1979) and the Phillips± Perron

(1988) methods will be used. The Dickey± Fuller test is
based on the t-statistic associated with the p-coe� cient in

the following regression estimated by ordinary least

squares:

¢yt ˆ ¬ ‡ pyt¡1 ‡
K

iˆ1

£i¢yt¡1 ‡ "t …1†

where ¢ is the diŒerence operator.

k is selected as the lag order, to be large enough to ensure

that the disturbances, "j, are serially uncorrelated disturb-

ances. Subsequently the Phillips± Perron unit root test is

performed. The Phillips± Perron test is based on the p-coef-

® cient in the following regression estimated by ordinary
least squares:

yt ˆ · ‡ pyt¡1 ‡ ­ …t ¡ T=2† ‡ et …2†

where T is the number of observations. The hypothesis

tested is

H0 : p ˆ 1 versus H1 : p < 1

The autocorrelation method has been used to investigate

the dependency between the log of daily price relatives at

time t and the log of daily price relatives at time t ‡ j,

where j refers to the time lag. We estimated the sample

autocorrelation function (ACF) for Zit, as well as the par-
tial autocorrelation function (PACF).

In practice ACF and PACF will be estimated up to lag

n/4, where n is the number of observations ± see Box-

Jenkins (1976). An overall test for serial correlation is car-

ried out using the Ljung-Box Q-statistic. Under the null
hypothesis, that all serial correlations are zero,

H0 : p1 ˆ p2 ˆ ¢ ¢ ¢ ˆ pj ˆ 0 the Ljung-Box Q statistic:

Q ˆ n…n ‡ 2†
K

jˆ1

n ¡ j… †¡1 ¢ r2
j …3†

where n ˆ number of observations
rj ˆ sample ACF at lag j

k ˆ the maximum lag considered …ˆ n=4†
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is distributed asymptotically as x2 with k degrees of free-

dom.
A number of empirical studies have shown that the

sample characteristics of log price returns are frequently

inconsistent with those of a normal distribution.

Therefore, in order to overcome the shortcomings of

normal distribution a more appropriate distribution is
needed for log price returns.

The distributions used in this study have the property of

being heavy-tailed (or fat-tailed). A distribution is heavy-

tailed if P X > s‰ Š ¹ s¡¬, as s !/ ; 0 < ¬ < 2, where

b s… † ¹ g…s† means b…s†=g…s† ! 1 as s !/. That is, regard-

less of the behaviour of the distribution for small values of
the random variable, if the asymptotic shape of the distri-

bution is hyperbolic, it is heavy-tailed. A family of heavy-

tailed distributions is given by the Levy-stable distribu-

tions. The Levy-stable distributions have slowly decaying

tails and in® nite second moments. The approach taken
here is to concentrate on the stable Levy distributions.

These distributions have a much higher degree of variabil-

ity, which makes them useful for modelling the empirical

characteristics of log price returns. Most stable probability

density distributions do not have closed analytical math-
ematical form. They are simply expressed in terms of their

characteristic function which is the Fourier transform of

the probability density function.

The logarithm of the characteristic function of a stable

random variable X is given by:

© t… † ² log E eixt ˆ i¯t ¡ ® tj j¬ 1 ‡ i­ t= tj j… †! tj j; ¬… †f g

where i ˆ ¡1
p

; ¬ is the Levy index 0 < ¬ µ 2 or a shape

parameter (see Levy, 1937; Feller, 1971; Zolotarev, 1986);

®…® > 0† is a measure of dispersion; ­ ; ¡1 µ ­ µ 1 is the

skewness parameter; ¯ is a location parameter and

! tj j; ¬… † ˆ
tan

º¬

2
; if ¬ 6ˆ 1

2

º
log tj j; if ¬ ˆ 1

The Levy-stable distributions include the normal distri-

bution as a special case (¬ ˆ 2). For the other possible

values of Levy index (¬), the stable distributions have

slowly decaying tails and in® nite second moments.

In addition, the Levy-stable distributions are fractal.
Rescaled range (R/S) analysis gives a relationship between

the Hurst exponent, H, and the Levy index (Peters, 1994).

The relationship can be expressed as follows:

a ˆ 1=H …4†

Equation 4 is used to calculate H, and the results are pre-

sented in the empirical section.

Thus, ¬ measures the fractal dimension of the probabil-

ity space. A strong statement is made by Peters (1994): `The
fractal dimension of the probability space is in this way

related to the fractal dimension of the time series’ . Thus,

(i) the Hurst exponent of the time series is related to the

Levy-index; ( ii ) the Levy-index (¬ ˆ 1=H) is the fractal
dimension of the probability space; (iii) 2-H is the fractal

dimension of the time series; (iv) if H ˆ 0:5, the time-series

exhibits a random walk; (v) if 1 ¶ H > 0:5, we have a

persistent time-series, (vi) if 0 µ H < 0:5, the time series

is antipersistent, and (vii) if H ˆ 1, it corresponds to
brownian motion.

Since most Levy-stable distributions do not have simple

mathematical expressions, the main di� culty lies with the

estimation of the parameters of Levy-stable distributions.

The simplest method of parameter estimation is that of

Fama and Roll (1968, 1971). The statistical properties,
however, of the method are not known.

The method developed by Press (1972), which is based

on a version of the method of moments, is used for ¬:

¬̂¬ ˆ log log © t1… †j j=log © t2… †j j‰ Š
log t1=t2… † …5†

where t1 and t2…t1 6ˆ t2† are two values of t and ©…t† is the

sample characteristic function.

One feasible way to estimate the standard error of ¬̂¬ is
through a bootstrap procedure, see for instance Efron

(1979). This study employs the bootstrap technique to

derive the standard error of the parameter of interest (¬̂¬).

The obvious attraction of the bootstrap technique is that it

may be applied to any statistic. Thus, even though the

standard error of a statistic may be impossible to express
in closed form, the bootstrap estimate can be really

approximated. In the present case, interest is focused on

determining the standard error of ¬̂¬. The basic idea is to

create a large number (K ˆ 100) of bootstrap samples to

obtain the bootstrap replications: ¬̂¬1; ¬̂¬2; . . . ; ¬̂¬100. The esti-
mate of the standard error of ¬̂¬ is then given by:

¼̂¼¬̂¬ ˆ
100

iˆ1

¬̂¬i ¡ ·¬¬… †2= 99

1=2

…6†

where

·¬¬ ˆ
100

iˆ1

¬̂¬i 100

The analysis and the estimation of the Levy-stable distri-

bution provide a way to test for fractal structure. However,

in order to study the long-term dependence and non-
periodic cycles and to understand better the low frequency

dynamics of log price relatives a statistical model is needed

that allows for fractal price dynamics.

Almost all early empirical studies of ® nancial time-series

focus on short memory processes ± a stationary process

which exhibits insigni® cant correlation beyond a small
lag. The Box-Jenkins methodology or the ARMA model

is used to investigate the short memory behaviour, a
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stationary process which exhibits insigni® cant correlation

beyond a small lag of ® nancial time-series, or following
Brockwell and Davis (1991) it is said that a stationary pro-

cess has short memory when its autocorrelation function is

geometrically bounded. It is now recognized that in many

cases, the ® nancial time-series may exhibit the characteris-

tics of long memory processes. A long memory process is a
stationary process which exhibits signi® cant correlation at

large lags ± see Beran (1994) and Fang et al. (1994). In

other words, a stationary process has long memory if its

autocorrelation function, say »…h†, has a hyperbolic decay,

»…h† ¹ Ch2d¡1 as h !/ where C 6ˆ 0 and d < 0:5 ± see

Brockwell and Davis (1991). Thus the autocorrelation
function of a long memory process follows a power law,

as compared to the exponential decay. Power-law decay is

slower than the exponential decay and, since d < 0:5, the

sum of the autocorrelation coe� cients of such a series

approaches in® nity. The speed of decay of the series auto-
correlation function is related to the Hurst exponent by

H ˆ 0:5 ‡ d . Thus, the next step in our methodology is

to investigate whether a short or long-memory process

works best as a model for the stationary ® nancial time

series under study.
The Autoregressive Fractally Integrated Moving

Average (ARFIMA) model provides an appropriate frame-

work ± Mandelbrot (1977), Granger and Joyeux (1980),

Hosking (1981), Lo (1991) ± for analysis of the long-term

dependence structure of a time series.

A time series {Xt} follows an ARFIMA (p,d,q) process
if:

©p B… † 1 ¡ B… †d
xt ˆ £q B… †¬t …7†

where

©p B… † ˆ 1 ¡ ¿1B ¡ ¢ ¢ ¢ ¡ ¿pB
p

£q B… † ˆ 1 ‡ £1B ‡ ¢ ¢ ¢ ‡ £qB
q

1 ¡ B… †d ˆ 1 ¡ dB ¡
d

2
1 ¡ d… †B2 ¡ ¢ ¢ ¢ and ¬tf g are i:i:d:

disturbances with mean zero and variance ¼2
¬ </.

The properties of the ARFIMA model are presented by
Granger and Joyeux (1980) and in Hosking (1981): ( p1): if

the roots of ©p…B† and £q…B† are outside the unit circle and

d , j0.5j, then Xt is both stationary and invertible; (p2): if

0 , d, 0.5 the ARFIMA model is capable of generating

stationary series which are persistent. In this case the pro-
cess displays long memory characteristics, such as a hyper-

bolic autocorrelation decay to zero; (p3): if d ¶ 0:5 the

process is non-stationary; …p4†: when d ˆ 0 there is an

ARMA process and it exhibits short memory; …p5†: when

¡0:5 < d < 0 the ARFIMA process is said to exhibit inter-

mediate memory or antipersistence.
Geweke and Porter-Hudak (1983) propose a non-

parametric procedure to obtain an estimate of the frac-

tional diŒerence parameter d. They propose the following

periodogram or spectrum regression:

ln Ix !¶… †f g ˆ ­ 0 ¡ d ¢ ln 4 sin2 !¶=2… † ‡ "¶ …8†

where Ix…w¶† is the periodogram at the frequencies

!¶ ˆ 2º¶=T…¶ ˆ 1; . . . ; g…T††. Under a proper choice of

g…T†, the ordinary least squares estimator of d is consistent

and the distribution of …d̂d ¡ d†=s…d̂d†, with s…d̂d† the standard
error d̂d , is asymptotically normal. The theoretical variance

of "¶ is known to be º2=6 and g…T† is commonly selected as

T0:5.

III . EMPIRICAL RESULTS

Before proceeding any furather, it is informative to con-
sider previous research on stock market behaviour in the

Athens Stock Exchange. Papaioannou (1982, 1984) found

evidence of dependencies in stock returns over six day

intervals. Panas (1990) supports the weak form of the e� -

cient market hypothesis. Panas and Stengos (1992) con-

ducted the Brock, Dechert, and Scheinkman test in order
to examine for the peresence of non-linear structure in the

residuals of rates of return regressions for a number of

selected stocks from the banking sector. In modelling

stock returns Koutmos et al. (1993) found that an ex-

ponential generalized ARCH model proved successful in

representing volatility in weekly stock returns.
The data set is based upon daily returns of 13 Greek

stocks. In this study the behaviour of stocks will be ex-

amined using the continuously compound rates of return,

calculated by:

Zit ˆ ln …pit=pit¡1† i ˆ 1; . . . ; 13 …9†

where pit is the closing stock price at time t. The data

consist of daily stock closing prices, covering the period 4

January 1993 to 5 May 1998; i.e. 1342 trading days.
To test the stationarity of the daily returns, the conven-

tional augmented Dickey± Fuller (1979) ½ test is used. The

second test used throughout this paper is the Phillips±

Perron (1988) test (Z test) which allows for serial correla-

tion and homoscedasticity.
Table 1 contains the values of the augmented Dickey±

Fuller and Phillips± Perron statistics for unit root in the log

price relatives. Thus, the null hypothesis is that the log

price relatives follow a non-stationary process, and the

alternative hypothesis is that the log price relatives follow
a stationary process. Using the unit root tests advocated by

Dickey± Fuller, Phillips± Perron will reject a unit root for all

of the stocks and we can conclude that the stocks are

stationary. Autocorrelation tests were conducted to deter-

mine the linear dependency between log returns at time t

and log returns at time t ‡ k, for k ˆ 1; 2; . . . ; 335. A com-
plete listing of all partial autocorrelations (PACF) and

autocorrelations (ACF) is available from the author upon
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request. The number of each stock which has autocorrela-

tion coe� cients signi® cantly diŒerent from zero at the 5%
level and the highest autocorrelation coe� cient are shown

in Table 2.

The reported magnitude of autocorrelations and partial

autocorrelations ranges between 0.113 and 0.222 which are

small, indicating that short memory of the data is weak.

Particular attention is focused on autocorrelation coe� -
cients in the neighbourhood of k ˆ 150; 151; . . . ; 335.

Here, a number of signi® cant partial autocorrelations and

autocorrelations at later time lags were found. This indi-

cates that there is dependence among distant observations.

More importantly, the long lasting autocorrelations evi-

dence indicates according to Taylor (1986), that the

processes are nonlinear with time-varying variances.
In addition, examination of the autocorrelations and

partial autocorrelations demonstrates that their patterns

do not exhibit signi® cant seasonal ¯ uctuations or de® nite

cycles. The Ljung± Box, Q statistic ± see Table 3 ± for the

log returns series indicates there there is an overall signi® -

cant autocorrelation in only nine of the thirteen cases. The

Ljung± Box Q statistics of the squared return series are
statistically signi® cant, except in two cases, indicating

that the conditional distributions of the daily returns are

changing through time ± see Hsieh (1988). This is a symp-

tom of ARCH eŒects.

To detect the presence of ARCH eŒects in the sample,
Engle’s (1982) Lagrange Multiplier (LM) test is used.

Engle’s proposed LM test can be carried out using the

following regression equation:

u2
t ˆ ¬0 ‡ ¬1u

2
t¡1 ‡ et with ut ˆ zt ¡ ẑzt

where ẑzt ˆ ­̂­ 0 ‡ ­̂­ 1zt¡1

The test statistic nR2, where R2 from the above regres-
sion, is asymptotically distributed as X 2

1 under the H0 : Zt

carries no ARCH. Table 3 reports the results of the LM

test. The results of this test suggest the presence of

ARCH(1) eŒects in all stock returns and coincide with

those of Q-statistic for squared returns. Thus, the Q-statis-
tic for squared returns and the LM test suggest the ARCH

speci® cation as a good approximation to the structure of

conditional variance of the stock data.

Univariate statistics for daily returns are shown in Table

4.

Skewness is used to assess the symmetry of the distri-
bution, the kurtosis for peakedness, and the fatness of

the tails. If the skewness is positive, the distribution is

skewed to the right, and if it is negative, the distribution

is skewed to the left. The results for the skewness test,

reported in Table 4, show that the distributions of daily
log price relatives are positive, except in three cases.

As evidenced in Table 4, all log price changes are lepto-

kurtic, i.e., the excess kurtosis is positive. These results

support Pagan’s (1996) study, in which he argues that the

returns of most ® nancial assets have semi-fat tails or, in
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Table 1. The augmented Dickey± Fuller (½ ) and Phillips± Perron (Z)
tests

Stock ½ Z

Pisteos 730.3 7109.8
Ktimatiki 732.6 7120.5
Ellados 734.6 7126.6
Geniki 738.6 7141.3
Emporiki 731.4 7114.4
Ergasias 730.6 7112.2
Ethniki 729.3 7104.4
Eteba 731.5 7114.6
Ioniki 745.4 7161.4
Iraklis 734.9 7127.9
Titan 732.9 7121.0
Alcatel 732.1 7116.6
Mihaniki 729.5 7106.1

Table 2. Structure of daily autocorrelations

No of Largest No of Largest
signi® cant absolute signi® cant absolute

Stock ACF ACF PACF PACF

Pisteos 40 0.197 (1) 29 0.197 (1)
Geniki 17 0.137 (35) 14 0.113 (35)
Ktimatiki 25 0.123 (1) 21 0.123 (1)
Ellados 12 0.113 (3) 11 0.113 (3)
Emporiki 23 0.151 (1) 20 0.151 (1)
Ergasias 36 0.177 (1) 19 0.122 (1)
Ethniki 26 0.222 (1) 17 0.222 (1)
Eteba 15 0.158 (1) 13 0.158 (1)
Ioniki 12 0.217 (1) 18 0.217 (1)
Iraklis 18 0.184 (2) 16 0.181 (2)
Titan 32 0.192 (1) 40 0.192
Alcatel 32 0.136 (1) 24 0.136 (1)
Mihaniki 29 0.211 (1) 21 0.211 (1)

Table 3. Ljung± Box and Lagrange multiplier statistics

Ljung± Box Ljung± Box
Stock (Returns) (Squared Returns) LM-ARCH

Pisteos 489.9* 1463.2* 126.1*
Geniki 397.2* 667.2* 132.6*
Ktimatiki 388.2* 969.5* 78.2*
Ellados 324.8 358.7 22.94*
Emporiki 440.5* 756.1* 63.0*
Ergasias 461.8* 1135.6* 120.0*
Ethniki 449.5* 1953.7* 109.2*
Eteba 335.6 649.1* 56.2*
Ioniki 321.4 366.5 235.3*
Iraklis 398.6* 670.7* 95.9*
Titan 433.9* 1488.6* 86.2*
Alcatel 341.9 1005.1* 135.0*
Mihaniki 434.3* 607.9* 28.0*

Note: Asterisks denote rejection of the null hypothesis.



other words, that the actual kurtosis is higher than the zero

kurtosis of the normal distribution.

Next, the analysis of the distribution of log price rela-

tives are turned to. The Bera± Jarque (BJ) statistic intro-

duced by Bera and Jarque (1980) can be employed to

investigate the normality of log price relatives. The BJ sta-

tistic is asymptotically distributed as x2 under the null

hypothesis. If the value of BJ test statistic is greater than

the signi® cance point of X2
2 , then the null hypothesis of

normality is rejected. The results of the BJ test are pre-

sented in Table 4. It may be concluded from Table 4 that

the hypothesis that all 13 stocks, empirical distributions of

log price relatives are drawn from an underlying normal

distribution, is rejected.

The statistical results of Table 4 are consistent with

results obtained for daily returns in other studies, for ex-

ample Koutmos et al. (1993), Panas (1990).

In general, from the results of Table 4 the following

conclusion is drawn. The ® ndings of leptokurtosis and

the signi® cant deviation of the log price relatives from nor-

mality can be a symptom of nonlinear dynamics (e.g. Fang

et al., 1994). Once normality is rejected, it is appropriate, in

this case, to use Levy-stable distributions.

Table 4 summarizes the estimates of Levy-index ¬.

Except for two cases (Ktimatiki and Ellados) it is obvious

that all Levy-index ¬s are diŒerent from two, which clearly

indicates that normality is not appropriate in describing log

price relatives. The values of ¬ range from 1.13 to 1.82,

with 11 of the 13 being between 1.13 and 1.45.

Using the bootstrap standard errors of the ¬-estimates, it

is found that two of the thirteen ¬s are not signi® cantly

diŒerent from two. The Levy-index, ¬ has an interesting

relationship with Hurst exponent ± see Equation 4.

Using Equation 4, the values of the Hurst exponent

(ˆ ĤH† of the stock market time series are presented in
Table 4; it ranges from 0.549 to 0.885. In all cases, the

values of ĤH were greater than 0.5, which implies that the

market is a persistent time series, and, therefore, exhibits

the Joseph and Noah eŒects ± see Mandelbrot (1972).

More importantly, the results con® rm the presence of

the long-memory eŒect since the estimates of the Hurst
exponent, ĤH, are greater than 0.5.

The indirect evidence of the presence of long memory

was based on the Hurst exponent, by using the estimated

characteristic, ¬, of the Levy-stable probability density

function.
In this study, an alternative technique is used to examine

the presence of long memory behaviour of the log price

changes that does not depend on knowledge of the under-

lying distribution. This study, in addition, provides a direct

test for fractal dynamics, by using a fractional time series

model.

The spectral regression type estimates of the fractional
diŒerencing parameter ± see Equation 8 ± are reported in

Table 5.

Fractional diŒerencing estimates are reported for

v ˆ T 0:55 and v ˆ T 0:60 to evaluate the sensitivity of d esti-
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Table 4. Summary statistics, estimates of Levy index and Hurst
exponent

Summary statistics
Hurst

Excess Bera- Levy-index exponent
Stock Skewness kurtosis Jarque ¬̂¬ ĤH

Pisteos 70.110 4.753* 1267.8* 1.44*(0.05) 0.694
Geniki 72.59* 88.24* 43 754* 1.13*(0.07) 0.885
Ktimatiki 0.138* 3.355* 634.3* 1.78(0.09) 0.562
Ellados 70.657* 10.43* 6191.5* 1.82(0.16) 0.549
Emporiki 0.087 2.981* 499.3* 1.39*(0.034) 0.719
Ergasias 0.073 3.255* 594.5* 1.4*(0.039) 0.714
Ethniki 0.456* 4.733* 1301.1* 1.45*(0.067) 0.690
Eteba 0.087 1.59* 143.3* 1.32*(0.044) 0.758
Ioniki 0.954* 1.66* 359.2* 1.37*(0.055) 0.730
Iraklis 0.219* 1.272* 101.61*1.41*(0.093) 0.709
Titan 0.333* 3.893* 873.7* 1.34*(0.084) 0.746
Alcatel 0.113 0.746* 34.1* 1.21*(0.019) 0.826
Mihaniki 0.006 2.771* 430* 1.25*(0.022) 0.80

Note: Asterisks denote rejection of the null hypothesis. Standard
errors (bootstrap estimates) are in parentheses.

Table 5. Estimates of the fractional diVerencing parameter d

Stock d̂d (0.55) d̂d (0.60)

Pisteos 0.2104a 0.233a

(2.4) (1.8)
Geniki 0.1559a 0.1706a

(1.86) (2.5)
Ktimatiki 0.1534 a 0.259a

(2.02) (3.4)
Emporikh 0.198b 0.209a

(1.55) (1.72)
Ellados 0.186a 0.151a

(1.76) (1.8)
Ergasias 0.1377a 0.101a

(2.3) (2.1)
Ethniki 0.128a 0.155a

(2.0) (2.1)
Eteba 0.103a 0.111a

(2.2) (2.7)
Ioniki 0.152a 0.168a

(2.8) (3.5)
Iraklis 0.2108a 0.162a

(2.9) (2.3)
Titan 0.109b 0.085

(1.58) (0.8)
Alcatel 0.121a 0.104a

(2.9) (2.2)
Mihaniki 0.142a 0.1012a

(2.4) (2.3)

Notes: d(0.55) and d(0.60) give the d estimates from spectral
regression with sample size T

0:55
and T

0:60
respectively. Asterisks

denote rejection of the null hypothesis. The values in parentheses
are t-values. a ˆ signi® cant at the 5% level ; b ˆ signi® cant at the
10% level.



mates to the choice of the sample size of the spectral regres-

sion ± see Geweke and Porter-Hudak (1983). The values of
d̂d range from 0.085 to 0.259.

The statistical results suggest the presence of long mem-

ory. Or, in other words, log price change dynamics are well

described by a long memory fractional process. Therefore,

the spectral regression results constitute, once more, evi-
dence of long memory characteristics of Athens stock

returns. Thus, both the indirect and spectral regression

analyses provide strong evidence in favour of long mem-

ory. Similar evidence of long memory is also found in

Barkoulas et al. (1998) on weekly stock returns of the

Athens Stock Exchange.
The relationship between the ® tted ARCH and fractal

process is an issue of some practical importance. The

empirical results of this section suggest that the Athens

Stock Exchange can be appropriately modelled by

ARCH and fractal processes. A connection between
ARCH and fractal processes has been suggested by

Peters (1994): `ARCH processes are not long memory pro-

cesses but local processes. Fractal processes, on the other

hand, are global processes . . . it is possible that the two

processes can coexist’ .

IV. CONCLUSIONS

This study found, (1) slowly decaying autocorrelation, (2)

the presence of heteroscedasticity and, (3) that the distribu-

tions of return series are non-normal. These ® ndings pro-

vide evidence that the dynamic process generating the daily
return series is nonlinear. However, an ARCH process

accounts for some of the non-linearities. The Athens

Stock Exchange can be characterized, in addition, by

other forms of nonlinear dynamics.

The non-normality of distributions leads to the question

of the appropriate distribution. The study has tried to
demonstrate the utility of stable distributions as applied

to investigating fractal patterns in daily returns. This

kind of analysis can be valuable in examining a long mem-

ory process through the Hurst coe� cient, which, once the

Levy index is estimated, is fully computed. Given the esti-
mates of the Levy index, the Hurst exponent was evaluated

which provides evidence of long memory behaviour in the

Athens Stock Exchange.

This paper employed a relatively new approach to the

analysis of ® nancial time series. The fractal dynamics
allows for interpretation of irregular cyclical ¯ uctuations

and long-term dependence. A semi-non-parametric spectral

method was adopted in the analysis, in an attempt to esti-

mate the fractional model. The results indicate that there is

statistically signi® cant evidence that the return series are

described by a long-memory fractional process. Both
Levy index and the spectral method found evidence of

long memory in stock returns. Therefore, the results of

this test provide further evidence of nonlinear characteris-

tics in the sample stock returns.
These ® ndings, thus, reinforce the argument of J.

Barkoulas and N. Travlos’s (1998) argument that t̀he be-

haviour of Greek stock returns may be consistent with a

nonlinear stochastic process. . .’ .
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