
I. INTRODUCTION

Stochastic processes with long-term dependence and methods
of their identification have been introduced first in the context
of hydrology and geophysics (cf Hurst, 1951; Mandelbrot and
Wallis, 1969a). Exploring various geophysical records such as
river discharges and rainfall data, these authors found typical
deviations from a random walk in the data pointing to long
range dependence in the generating processes. Hurst proposed
a method for the quantification of long-term memory which is
based on estimating a parameter for the scaling behaviour of
the range of partial sums of the variable under consideration.
This method has been refined by Mandelbrot whose influence
stimulated similar research in economics. As far as financial
time series are concerned, a number of applications of rescaled
range analysis as suggested by Mandelbrot can be found
during the late 1970s and 1980s (e.g. Greene and Fielitz, 1977;
Booth et al. 1982; Kaen and Rosenman, 1986). More recently,
more refined techniques have been developed to identify long-
term dependence such as the modified rescaled range analysis
(Lo, 1991) and periodogram regression (Geweke and Porter-
Hudak, 1983). All these are non-parametric or semi-para-
metric approaches and can be applied without detailed
assumptions on the structure of the underlying model.

The assertion of long-term dependence in macroeconomic
data may not seem implausible at a first view and squares
well with theoretical developments focusing on ‘hysteresis’

in macroeconomic variables such as employment. As far as
financial markets are concerned, however, the very notion
of dependence (be it short term or long term) is in
contradiction to the perceived wisdom of efficient market
performance. Since there is hardly any significant auto-
correlation between adjacent time periods in stock returns
(denoted rt in the following), it appears even more
improbable to find dependence extending over long
horizons. However, an appropriate combination of, say,
negative short-term dependence and positive long-term
dependence may in fact obscure the underlying pattern of
some process leading to apparently insignificant autocorre-
lation despite temporal dependence. On the other hand, the
literature on mean reversion in financial prices implicitly
assumes the existence of some mechanism which works
over long time horizons. Furthermore, we know that squared
returns (r2

t ) usually exhibit significant autocorrelation. In
time series analyses, this fact has led to the development of
the ARCH type stochastic models. However, ARCH and its
variants are models incorporating only short-term depen-
dence in variances. It has been argued that this modelling
device may not be entirely adequate and that the conditional
variances of financial prices may be more accurately
characterized by processes incorporating long-term stochas-
tic dependence (Crato and de Lima, 1994). This argument
has been extended by Ding et al. (1993), who showed that a
broad range of power transformations of absolute returns
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exhibit long autocorrelations and that this property is
strongest for power around 1, i.e. for rt .1

Thus it appears worthwhile to formally test for the presence
of long memory in the data and to check whether the results
for smaller markets coincide with well-known findings for the
US and UK stock markets. In this paper, we analyse the
German share price index DAX which is reported daily by the
Frankfurt Stock Exchange. We use a time series starting 4
January 1988 and extending to 16 October 1995 (yielding
1949 entries for daily returns). This series covers the entire
period from the beginning of daily publication of the DAX
until the time when this study was started. Since share indexes
are aggregates and it has been demonstrated by Granger
(1980) that long memory in indexes may result from
aggregation of suitable short-memory elements we also
applied our statistical procedures to the time series of those
29 stocks which were included in the index in 1995 and had
been on the market already in 1988 (only one of the 30 parts of
the DAX as of 1995 had to be neglected because of too short a
record). In addition, we also analysed a longer series of
reconstructed historical figures2 of the DAX extending back to
1959 (yielding a time series of 9011 daily entries from 1959 to
1995).

II. METHODS

Our investigation starts by estimating the so-call Hurst
exponent for log price changes (returns) as well as squared
returns and absolute returns. The Hurst exponent H char-
acterizes the scaling behaviour of the range of cumulative
departures of a time series from its mean. Formally, the range
R of a time series xt t 1 , T is defined as:

RT
max

1 t T

T

t 1

xt x
min

1 t T

T

t 1

xt x 1

Here, x is the standard estimate of the mean. Usually the range
is rescaled by the sample standard deviation (S), yielding the
famous R S statistic. It is well-known that for IID processes
the so defined rescaled range increases asymptotically with the
square root of observations. However, Hurst and Mandelbrot
found a scaling behaviour with exponent H 0 5 to be
characteristic of many geophysical time series. Such scaling
reflects a tendency of deviations from the mean to be
reinforcing and is also characteristic of time series models

known as fractional Gaussian noises (cf Mandelbrot and
Wallis, 1969b) and fractionally integrated ARMA models (cf.
Granger, 1980). In these processes, long-term dependence
shows up in a slow (hyperbolic) decay of the autocorrelation
function.3 Relying on the asymptotic scaling relationship.

R S t atH 2

The Hurst exponent H is usually estimated by a simple linear
regression over a sample of increasing time horizons
(s t1 t2 T ):

R S s a H s 3

Though this approach found wide applications in diverse
fields, it turned out that no asymptotic distribution theory
could be derived for H itself. Hence, no explicit hypothesis
testing can be performed and the significance of point
estimates H 0 5 or H 0 5 rests on subjective assessment.4

Luckily, the asymptotic distribution of the rescaled range itself
under a composite null hypothesis excluding long-memory
could be established by Lo (1991). Using this distribution
function and the significance levels reported in his paper, one
can test for the significance of apparent traces of long-term
memory as indicated byH 0 5. However, Lo also showed
that the distributional properties of the rescaled range are
affected by the presence of short-term memory and he devised
a modified rescaled range Q which adjusts for possible short-
memory effects by applying the Newey–West heteroscedas-
ticity and autocorrelation consistent estimator in place of the
sample standard deviation S:
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Under the null of no long term memory the distribution of the
random variable V T 0 5Q converges to that of the range
of a so-called Brownian bridge. Critical values of this
distribution are tabulated in Lo (1991, Table II).

T. Lux702

1For the UK stock market, this finding of persistence in rt and r2
t has been disputed in a recent paper by Brookfield (1995). However, in contrast to Ding et al.,

who use a very long record of daily data, Brookfield’s analysis is performed with a much shorter series of monthly returns. according our own experiences with
different sample sizes reported below it seems possible that Brookfield’s negative results are at least in part due to the unreliability of the Lo (1991) statistic for
small samples and comparatively large truncation lags.
2This series was compelled by a working group at the Frankfurt Stock Exchange and is available from this source.
3Scaling behaviour with H 0 5 points to anti-persistence in the time series. Models generating this kind of pattern are included in the classes of models
mentioned in the main text.
4However, in a recent paper, Brooks (1995) performed significance tests for H relying on boot strapping of surrogate data (data with the same distributional
characteristics and short-run autocorrelation structure as the time series under consideration).



The third method relies on the properties of the period-
ogram of long-memory processes at low frequencies. This
limiting behaviour is derived for the ARFIMA class of long-
memory models by Geweke and Porter-Hudak (1983) but
since they demonstrate equivalence between the concepts of
fractionally integrated ARMA models and fractional Gaussian
noises it also extends to the latter. ARFIMA models are

generalizations of standard (short-memory) ARMA models:

B 1 B dyt B t 5

where B is the backward-shift operator, and B and B
are the AR and MA polynomials respectively. Allowing d to
assume non-integer values introduces the possibility of
fractional differencing. In fact, it has been found that models
with non-integer d display the slow (hyperbolic) decay of the
autocorrelations usually identified with long-memory. Ge-
weke and Porter-Hudak show that the spectral density function
of a fractional Gaussian noise with Hurst exponent H is
identical with that of an ARFIMA model with differencing
parameter d H 0 5. Furthermore, they demonstrate that d
can be estimated by a simple linear regression of the log-
periodogram I j T on 4 2

j T 2 at low Fourier
frequencies j T 2 j T , i.e.:

I j T c d 4 2
j T 2 vj

j 1 2 m T
6

where the disturbance vj can be shown to be asymptotically
normal with variance 2 6 under normality of the innovation
t in Equation 5.
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Table 1. Estimates of Hurst exponent

rt r2
t rt

DAX, 1988–95 0.54 0.72 0.82
DAX, 1959–95 0.55 0.77 0.84
Mean of 29 stocks 0.55 0.70 0.78
Max. of 29 stocks 0.62 0.77 0.88
Min. of 29 stocks 0.49 0.62 0.70

Notes: Following e.g. Mandelbrot and Wallis (1969a) a selection of time steps
has been used in the regression 2: specifically, for the shorter series we used
s 50 60 100 200 1900, whereas for the longer series
s 50 60 100 200 1000 2000 9000 was used. R S was
then calculated as the mean of a fixed number of non-overlapping intervals for
the smaller time steps. For longer time steps, the number of intervals had to be
reduced successively and some overlap had to be accepted.

Table 2. Rescaled range test statistics

V 0 V 5 V 10 V 25 V 50 V 100 V 200

DAX, 1988–95 1.13 1.14 1.18 1.18 1.19 1.19 1.28
DAX, 1959–95 1.33 1.29 1.28 1.22 1.20 1.17 1.16

rt 29 stocks:
significant cases at 1 0 0 0 0 0 0

90%
significant cases at 0 0 0 0 0 0 0

95%
significant cases at 0 0 0 0 0 0 0

99%
DAX, 1988–95 2.73*** 2.28*** 2.15*** 1.96** 1.77* 1.59 1.46
DAX, 1959–95 5.35*** 3.94*** 3.49*** 2.88*** 2.51*** 2.18*** 1.92**

r2
t 29 stocks:

significant cases at 29 23 3 19 12 2 0
90%

significant cases at 27 22 20 16 7 0 0
95%

significant cases at 24 18 15 6 1 0 0
99%

DAX, 1988–95 4.14*** 3.10*** 2.68*** 2.11*** 1.71 1.41 1.22
DAX, 1959–95 7.89*** 5.44*** 4.58*** 3.52*** 2.87*** 2.37*** 1.95**

rt 29 stocks:
significant cases at 29 29 29 25 13 3 0

90%
significant cases at 29 29 28 20 11 0 0

95%
significant cases at 29 27 22 11 4 0 0

99%

Notes: *, **, and *** denote significance at the (two-sided) 90%, 95% and 99% level, respectively. The 90%, 95% and 99% intervals are given by {0.861, 1.747},
{0.809, 1.862}, and {0.721, 2.098}, respectively, cf. Lo (1991), Table II.



III. Results

Table 1 gives the Hurst exponents for returns, squared returns
and absolute returns of the DAX as well as the range of values
obtained for the 29 individual share price records. In an
attempt to the short-term dependence and pre-asymptotic
behaviour we restricted the regression Equation 3 (selected)
lags s 50. One observes that for the period 1988 to 1995 as
well as for the extended historical record the statistics for
returns stay close to the benchmark 0.5, which means that
there is at least no strong indication of long memory. Squared
returns as well as absolute returns are, however, much more
indicative of long-term effects with Hurst exponents ranging
consistently above one half. Two more features are worth

remarking here: First, looking at the detailed results for
individual stocks (available upon request) we always find:
H rt H r2

t H rt . Hence, confirming the findings by
Ding et al. (1993), the long-memory property is uniformly
stronger in absolute returns than in squared returns. Second,
the fit of the regression Equation 3 is always very good
yielding R2’s around 0.99 throughout. Hence, the scaling law
Equation 2 with estimated exponent H appears to depict very
accurately the behaviour of the rescaled range of the time
series under consideration.

Which of these results can be judged to characterize
statistically significant deviations from H 0 5? Table 2
reports the test statistics V T 0 5Q for lags 0, 5, 10,
25, 50, 100 and 200.5 The first case corresponds to a test based
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Table 3. Estimates of fractional differencing parameter d from periodogram regression

T0 55 T 0 50 T0 45

DAX, 1988–95 0.06 0.11 0 03
DAX, 1959–95 0.03 0.00 0.02

Mean (29 stocks) 0.03 0.02 0 02
rt Min (29 stocks) 0 13 0 24 0 31

Max (29 stocks) 0.22 0.26 0.21
significant cases at 2 5 2

90%
significant cases at 1 3 2

95%
significant cases at 0 0 0

99%
DAX, 1988–95 0.18** 0.27** 0.21
DAX, 1959–95 0.25*** 0.24*** 0.24**

Mean (29 stocks) 0.17 0.23 0.24
r2
t Min (29 stocks) 0.01 0.00 0.00

Max (29 stocks) 0.29 0.46 0.54
significant cases at 19 20 15

90%
significant cases at 18 16 13

95%
significant cases at 8 10 5

99%
DAX, 1988–95 0.38*** 0.59*** 0.45***
DAX, 1959–95 0.37*** 0.37*** 0.41***

Mean (29 stocks) 0.32 0.42 0.41
rt Min (29 stocks) 0.19 0.22 0.24

Max (29 stocks) 0.43 0.60 0.62
significant cases at 29 29 28

90%
significant cases at 29 29 27

95%
significant cases at 27 25 20

99%

Notes: *, **, and *** again denote significance at the (two-sided) 90%, 95% and 99% level, respectively. Inference is based on the asymptotic distribution of the

estimate of d d N d
2

6
m

t 1
yt y 2 with yt , the regressor in Equation 6:yt 4 2

j T 2 .

5We also tried the data-dependent rule for selecting given in Lo (1991, p. 1302). Typically, the selected lag length was between 0 and 3 for returns yielding
insignificant test statistics, while it ranged from 3 to 12 for squared and absolute entries yielding highly significant values of V .



on the unadjusted rescaled range R S used by Hurst and
Mandelbrot while the other cases adjust for the possible
presence of short-run autocorrelation according to Equation 4.
As can be observed, there is an almost complete lack of
evidence of long-term memory in returns. The only, margin-
ally significant case out of 29 stock is one of anti-persistance ;
i.e. corresponding to H 0 5, rather than positive long-run
effects. Again, the picture is very different for squared and
absolute returns: the statistics are highly significant for the
index over 1988–95 as well as for the majority of individual
shares up to lag 25, but significance ‘vanishes’ when we
take into account 50, 100 or 200 lags in the correction of the
variance. However, Lo himself showed by means of Monte
Carlo simulation that the power of his test is considerably
reduced as the truncation parameter is increased as
compared with sample size. Hence, we have reason to
question the reliability of the statistic for large lags . This
means that conclusion of the kind that there be short-run
dependence over 50 lags would not be warranted. On the other
hand, the results for the long time series remain significant at
the 95% or even at the 99% level even at those large
truncation lags. This finding suggests the conclusion that the
insignificant statistics of the shorter series for 50 are
likely to be due to the smaller sample size.

Table 3 gives the estimates of the differencing parameter d
from log-periodogram regression. Here one faces a problem of
selecting an appropriate sample of small Fourier frequencies
similarly to the problem of selecting appropriate lag length in
the Lo statistic. Geweke and Porter-Hudak (1983) as well as a
number of other authors recommend choosing a number m of
smallest frequencies to be used in the regression Equation 6,
where m is the largest integer smaller than T0 5. We followed
them and tested the sensitivity of the estimates by also
calculating point estimates from samples j m int T0 55

and m int T0 45 .6 The results broadly confirm our earlier
insights: the estimated differencing parameters d stay close to
d 0 (i.e. H 0 5) for returns, whereas they are significantly
above zero for squared and absolute returns. Also, we found
that absolute returns have higher values of d than squared
returns implying slower decay of autocorrelation of the
former. Though the results for the index and the means from
our 29 stocks are in quite good agreement with the figures
obtained with the Hurst exponent (Table 1), the estimates are
less uniform among our sample of stocks. For example, while
the Hurst exponent for returns ranged within the interval {0.49,
0.62} the differencing parameters obtained using m int T0 5

extend from 0 24 to 0.26. With the above relationship
d H 0 5 one, therefore, obtains the much larger band-

width {0.26, 0.76} for the variation of the scaling parameterH
among stocks.

IV. CONCLUSIONS

Our investigation of German stock market data shows that
there is no evidence for (positive or negative) long-term
dependence in the returns series. This is in sympathy with
findings for the USA (Lo, 1991; Goetzman, 1991) and the UK
(Mills, 1993). As has been emphasized recently by Ding et al.
(1993), the long-memory property is strongest in absolute
returns. Another remarkable result is the similarity of the
results over different time horizons: estimated Hurst exponents
as well as differencing parameters are almost identical for the
seven-year period 1988 to 1995 and for the historical record
covering 37 years. This suggests that the pattern of
dependence in volatility remained quite constant over time.7

Because of this unanimity, we are also tempted to place more
weight on the significant results of Lo’s modified rescaled
range statistic at large lags 50 obtained for the historical
data set than at the insignificant results obtained for the
smaller record. Finally, strong evidence for long-memory in
volatility does not only pertain to the German share price
index DAX, but was also obtained for the majority of
individual stocks within the index. This suggests that long-
term dependence in volatility is not merely a consequence of
aggregation (a possibility put forward by Granger, 1980) but
has to be traced back to the price formation mechanism of
financial markets.
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